Refine Your Search

Search Results

Viewing 1 to 8 of 8
Technical Paper

A Comparative Study on Influence of EIVC and LIVC on Fuel Economy of A TGDI Engine Part I: Friction Torques of Intake Cams with Different Profiles and Lifts

2017-10-08
2017-01-2245
In order to better understand how the Atkinson cycle and the Miller cycle influence the fuel consumption at different engine speeds and loads, an investigation was conducted to compare influences of early intake valve closing (EIVC) and late intake valve closing (LIVC) on the fuel consumption of a 1.5L turbo-charged gasoline direct injection (TGDI) engine. The engine was tested with three different intake cams, covering three intake durations: 251 degCA (the base engine), 196 degCA (the Miller engine), and 274 degCA (the Atkinson engine). Compression ratios are 9.5:1 for the base engine and 11.4:1 for the Atkinson and Miller engines, achieved with piston modifications. Results of this investigation will be reported in three papers focusing respectively on characteristics of the engine friction, in-cylinder charge motions for different intake events, and combustion and fuel economy without and with EGR for the naturally aspirated mode and boost mode.
Technical Paper

A Comparative Study on Influence of EIVC and LIVC on Fuel Economy of A TGDI Engine Part III: Experiments on Engine Fuel Consumption, Combustion, and EGR Tolerance

2017-10-08
2017-01-2232
The present paper is Part III of an investigation on the influences of the late intake valve closing (LIVC) and the early intake valve closing (EIVC) on the engine fuel consumptions at different loads and speeds. The investigation was conducted with two 1.5L turbo-charged gasoline direct injection (TGDI) engines, one with a low-lift intake cam (the Miller engine) and the other with a high-lift intake cam (the Atkinson engine). This paper focuses on the influence of the intake-valve-closing timing on the fuel economy with and without exhaust gas recirculation (EGR). It was found that the Miller engine had a lower friction than the Atkinson engine; however, the impact of the difference in engine frictions on the fuel economy was mainly for low-speed operations. Across the engine speed range, the Miller engine had longer combustion durations than the Atkinson engine as a result of the impact of EIVC on the cylinder charge motion.
Journal Article

A Semi-Empirical Model for Predicting Pressure Drops of Fouled EGR Coolers

2010-10-05
2010-01-1948
The performance of an EGR cooler is influenced significantly by particulate fouling in the cooler. As a result of fouling, a highly porous soot deposit layer is formed in the EGR cooler. This deposit layer not only causes a decrease in the cooler effectiveness but also an increase in the EGR pressure drop over the cooler. Increasing the EGR cooler pressure drop reduces the driving force for the EGR flow under a given differential pressure across the engine. Thus, the EGR cooler fouling has a big impact on the control of the engine-out NO emissions. In this paper, a semi-empirical model is developed for predicting pressure drops of fouled EGR coolers. Based on this model and the particulate fouling model developed previously by the author, the process is analyzed for the pressure drop increase with building up of the soot deposit in an EGR cooler.
Technical Paper

Can Heavy-Duty Diesel Engines Fueled with DME Meet US 2007/2010 Emissions Standard with A Simplified Aftertreatment System?

2006-04-03
2006-01-0053
Emissions from CI engines fueled with dimethyl ether (DME) were discussed in this paper. Thanks to its high content of fuel oxygen, DME combustion is virtually soot free. This characteristic of DME combustion indicates that the particulate filter will not be needed in the aftertreatment system for engines fueled with DME. NOx emissions from a CI engine fueled with DME can meet the US 2007 regulation with a high EGR rate. Because 49% more fuel mass must be delivered in each DME injection than the corresponding diesel-fuel injection, and the DME injection pressure is lower than 500 bar under the current fuel-system technology, the DME injection duration is generally longer than that of diesel-fuel injection. This is unfavorable to further NOx reduction. A multiple-injection strategy with timing for the primary injection determined by the cylinder temperature was proposed.
Journal Article

Characteristics of Soot Deposits in EGR Coolers

2009-11-02
2009-01-2671
Characteristics of soot deposits in the EGR cooler were studied, on basis of which a comprehensive model for soot particle depositions was developed. It was found that the soot deposit may be divided into three characteristic layers: a quasi-crystal base layer formed by nano-particles, an intermediate layer of denser packing of soot particles with meso pores, and a highly porous top layer formed by mechanical interlocking of soot particles. The cooler performance is affected significantly by the top layer of the deposit. Because of their weak contact energy, particles in the top layer and intermediate layers may be removed by the shear force under high EGR flows. The contact energy for the particles in the base layer is much stronger than that in the surface and intermediate layers. The base layer may be removed only with physicochemical methods.
Technical Paper

Development of A 1.5L High-Efficiency and High-Specific-Power Hybrid Engine

2022-10-28
2022-01-7062
Although the brake thermal efficiency of the state-of-the-art Atkinson-cycle hybrid engines have reached 41%, such engines typically have a low specific power. The ideal hybrid engines for SUVs should have a high thermal efficiency as well as a high specific power. Jiangling Motors recently developed a 4-cylinder, 1.5L TGDI hybrid Miller engine for powering mid-size SUVs, which has achieved 42% brake thermal efficiency, 19.3-bar BMEP, and 73.3-kW/L specific power. The engine has a high compression ratio, a long stroke, and is equipped with a low-pressure EGR system. It can operate with the stoichiometric mixture on the full engine map, with the help of the water-cooled exhaust manifold and the intelligent thermal management system.
Journal Article

Particulate Fouling in EGR Coolers

2009-10-06
2009-01-2877
The physical process of particulate fouling in EGR coolers is analyzed in this paper. Various particulate-deposition mechanisms are discussed and an order of magnitude comparison suggests that thermophoresis is the dominant mechanism for the EGR cooler fouling. The EGR temperature at the cooler inlet, the soot particle concentration in EGR, and the EGR mass flow rate are found to be the parameters governing the EGR cooler fouling. The structure for the soot deposit buildup on the cooler wall is also discussed. It is found that the surface layer of the deposit governs the fouling factor. A comprehensive model for soot particle depositions is developed employing heat, mass, and momentum transfer theories for the particle-gas system. The fouling model developed in this study can predict the process of deterioration in the effectiveness. The predictions of EGR cooler fouling are compared with experimental data and good agreement is observed.
Technical Paper

Physicochemical Characteristics of Soot Deposits in EGR Coolers

2010-04-12
2010-01-0730
Physicochemical characteristics of the soot deposits in a fouled EGR cooler are studied in this paper. It is found that a three-layer model for the soot deposited in the EGR cooler may well describe the behavior of the depositing process: a dense base layer with micro pores (≺ 5 nm), a randomly packed intermediate layer with meso pores (5-50 nm) and a loose surface layer with macro pores (≻ 50 nm). The surface layer is thick and highly porous, formed by mechanical interlocking of the agglomerated primary soot particles or soot clusters. The soot particles in the surface layer may be removed by a high shear EGR flow. Condensates in the deposit, especially water, can have a significant influence on the structure of the deposit. Capillary forces on the wetted soot particles could be comparable to the contact forces holding the particles together. It is found that the hydroscopicity of the soot particles vary with their content of soluble organic fraction (SOF).
X