Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Coolant Flow in the Cylinder Head/Block of the Ford 2.5L DI Diesel Engine

1991-02-01
910300
Local measurements of the mean and rms velocities have been obtained by laser Doppler velocimetry in the coolant passages of a transparent model of a Ford 2.5L diesel cylinder head and block at a steady flowrate of 6.83 × 10-4 M3/s. The simulation of the coolant fluid by a mixture of hydrocarbon fluids at a predetermined constant temperature allowed accurate matching of the refractive index to that of the acrylic model, thus providing optical access for LDV measurements of the internal flow in sensitive areas where cooling is essential to prevent metal-fatigue failure. The results were obtained in sufficient detail to allow further validation of CFD coolant flow models.
Technical Paper

Cyclic Variations of Initial Flame Kernel Growth in a Honda VTEC-E Lean-Burn Spark-Ignition Engine

2000-03-06
2000-01-1207
Lean combustion in spark-ignition engines has long been recognised as a means of reducing both exhaust emissions and fuel consumption. However, problems associated with cycle-by-cycle variations in flame initiation and development limit the range of lean-burn operation. An experimental investigation was undertaken in order to quantify the effects of spark energy released and initial flame kernel growth on the cyclic variability of IMEP and crank angle at which 5% mass fraction was burned in a Honda VTEC-E, stratified-charge, pentroof-type, single-cylinder, optically accessed, spark-ignition engine. Simultaneous CCD images of the flame at the spark plug were acquired from two orthogonal views (one through the piston crown and one through the pentroof) on a cycle-by-cycle basis during the first 40 crank angle degrees after ignition timing, for isooctane port injection at an air to fuel ratio of 22, engine speed of 1500 RPM, 30% volumetric efficiency and 40° crank angle spark advance.
Technical Paper

Droplet Velocity/Size and Mixture Distribution in a Single-Cylinder Four-Valve Spark-Ignition Engine

1998-02-01
981186
Laser Doppler velocimetry, phase Doppler anemometry and Mie scattering were applied to a single-cylinder, four-valve, spark-ignition gasoline research engine equipped with a fully transparent liner and piston, to obtain information about the tumble flow and the droplet size and velocity distributions during induction and compression, for lean air/fuel mixture ratios of 17.5 and 24 and with closed-valve and open-valve fuel injection. The mixture distribution obtained with the two injection strategies was correlated with flame images, pressure analysis and exhaust emissions which confirmed the advantages of combining open-valve injection with tumble to allow stable and efficient engine operation at an air/fuel ratio of 24 through charge stratification and faster flame growth.
X