Refine Your Search

Search Results

Viewing 1 to 4 of 4
Technical Paper

Columbus Launch Preparation - Final System ATCS Tests Summary and Lessons Learned

2008-06-29
2008-01-2033
Final preparation and configuration of the Columbus module at the Kennedy Space Center (KSC) required the performance of system level tests with the Active Thermal Control System (ATCS). These tests represented the very last system level activities having been concluded on the Columbus module before handover to NASA for space shuttle integration. Those very last tests, performed with the ATCS comprised the final ATCS Leakage Test, the final calibration and adjustment of the Water Flow Selection Valves (WFSV) and Water On/Off Valves (WOOV) as well as a sophisticated ATCS Residual Air Removal test. The above listed tests have been successfully performed and test data evaluated for verification closeout as well as input delivery for operational Flight Rules and Procedures. Some of the above mentioned tests have been performed the first time hence, a succeeding lessons learned collection followed in order to improve the perspectives of future tests.
Technical Paper

Evaluation of a Membrane Based Carbon Dioxide Absorber for Spacecraft ECLS Applications

1996-07-01
961369
In an on-going harmonized ESA/NIVR project, performed by Stork Comprimo and TNO-MEP, the removal of the carbon dioxide with membranes is studied. The use of membrane gas absorption for carbon dioxide removal is currently hampered by the fact that the commonly used alkanolamines result in leakage problems when using polyolefin membranes. This prevents the use of membrane gas absorption for carbon dioxide in spacecrafts. TNO has recently discovered classes of liquids for carbon dioxide absorption which are suitable for use with cheap polyolefin membranes. This opens the possibility for using membrane gas absorption for carbon dioxide control in spacecrafts. In the project the performance of membrane gas absorption for the removal of carbon dioxide from gas streams having a chemical composition representative of spacecraft conditions are determined experimentally.
Technical Paper

Integrated CO2 and Humidity Control by Membrane Gas Absorption

1997-07-14
972560
In a harmonized ESA/NIVR project the performance of membrane gas absorption for the simultaneous removal of carbon dioxide and moisture has been determined experimentally at carbon dioxide and humidity concentration levels representative for spacecraft conditions. Performance data at several experimental conditions have been collected. Removal of moisture can be controlled by the temperature of the absorption liquid. Removal of carbon dioxide is slightly affected by the temperature of the absorption liquid. Based on these measurements a conceptual design for a carbon dioxide and humidity control system for the Crew Transport Vehicle (CTV) is made. For the regeneration step in this design a number of assumptions have been made. The multifunctionality of membrane gas absorption makes it possible to combine a number of functions in one compact system.
Technical Paper

Mode Transition Analyses of the Attached Pressurized Module Cabin Air Loop with EcosimPro

2000-07-10
2000-01-2366
The change in mode status of the Attached Pressurized Module (APM), termed a mode transition, is due to the need of changing the APM configuration triggered by nominal or contingency events, i.e: initial system activation and further de/reactivation, payload activation, crew, ground or station initiated mode changes, etc. Past simulations of the APM Cabin Air Loop, for individual operational modes, have been performed by Dornier. This paper presents the results of the hydraulic and thermal analyses of the APM Cabin Air Loop for mode transition with the new version of the European Space Agency (ESA) supported software EcosimPro. The range of analysis has now been extended to long duration simulation of transitions between modes, which was impractical in the past.
X