Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Hybrid Solar and Artificial Lighting (HYSAL): Next-Generation Lighting Strategy for Bioregenerative Advanced Life Support

1999-07-12
1999-01-2104
The evolution of lighting systems for Bioregenerative Space Life Support (BLSS) has been brought about by two major challenges confronting current BLSS models: (1) the extensive use of highly energy-intensive artificial lamps; and (2) the substantial energy wastes incurred through heat dissipations by these lamps, frequently dictating unnecessarily large, and costly, physical volumes for the plant growing structures. The results of our studies showed that Solar Irradiance Collection, Transmission and Distribution Systems (SICTDS) should be used to augment artificial lighting for growing plants in a BLSS to constitute a reliable, energy-efficient and mass-optimized Hybrid Solar and Artificial Lighting (HYSAL) system for a BLSS.
Technical Paper

Plant Hardware Equipped with Hybrid Lighting: Combining Solar Irradiance with Xenon-Metal Halide Lamps or Light-Emitting Diodes for Life Support in Space

2001-07-09
2001-01-2423
Hybrid solar and electric lighting (HYSEL) systems constitute the latest generation of lighting systems for advanced life support, exhibiting continued potential for reducing the significant electrical power demand of current bioregenerative life support systems (BLSS). Two experimental HYSEL systems were developed: one employing xenon-metal halide (XMH) lamps and the other adopting light-emitting diodes (LEDs) as the electric-lighting components, and both using a mirror-based, fiberoptic-based solar collection system. The results showed that both the XMH and LED HYSEL systems effected reduced effective plant growing volume, indicating potential for a compact plant hardware design. The apparent electrical conversion efficiency of the LED HYSEL system exceeded that of the XMH HYSEL system by five-fold. Both the XMH and LED HYSEL systems provided reasonably acceptable spectral quality and lighting uniformity.
X