Refine Your Search

Search Results

Viewing 1 to 4 of 4
Technical Paper

Assessment of Silver Based Disinfection Technology for CEV and Future US Spacecraft: Microbial Efficacy

2007-07-09
2007-01-3142
This work describes the microbiological assessment and materials compatibility of a silver-based biocide as an alternative to iodine for the Crew Exploration Vehicle (CEV) and future spacecraft potable water systems. In addition to physical and operational anti-microbial counter-measures, the prevention of microbial growth, biofilm formation, and microbiologically induced corrosion in water distribution and storage systems requires maintenance of a biologically-effective, residual biocide concentration in solution and on the wetted surfaces of the system. Because of the potential for biocide depletion in water distribution systems and the development of acquired biocide resistance within microbial populations, even sterile water with residual biocide may, over time, support the growth and/or proliferation of bacteria that pose a risk to crew health and environmental systems.
Technical Paper

Controlling the Water Availability from a Ceramic Tube System Subjected to Non-Standard Gravities

1996-07-01
961505
The Porous Ceramic Tube - Nutrient Delivery System (PCT-NDS) offers means to control water availability to plants under non-standard gravities. It is hypothesized that control can be obtained by applying suction pressure within the ceramic tubes. The research objectives include verifying the presented control equation for the PCT-NDS under micro-(less than 1 g) and hyper- (greater than 1 g) gravities. Experiments were conducted on a KC-135 subjecting the system to near-zero to 2 g's and to sustained hyper-gravities upto 10 g's using a centrifuge. Results indicated that the water availability can be controlled through applied suction pressure.
Technical Paper

Hydroponic Crop Production Using Recycled Nutrients from Inedible Crop Residues

1993-07-01
932173
The coupling of plant growth and waste recycling systems is an important step toward the development of bioregenerative life support systems. This research examined the effectiveness of two alternative methods for recycling nutrients from the inedible fraction (residue) of candidate crops in a bioregenerative system; 1) extraction in water, or leaching, and 2) combustion at 550 °C, with subsequent reconstitution of the ash in acid. The effectiveness of the different methods was evaluated by 1) comparing the percent recovery of nutrients, and 2) measuring short- and long-term plant growth in hydroponic solutions, based on recycled nutrients.
Technical Paper

KSC Advanced Life Support Breadboard: Facility Description and Testing Objectives

1997-07-01
972341
The Breadboard Project at Kennedy Space Center has focused on the development of the bioregenerative life support components, crop plants for water, air, and food production and bioreactors for recycling of waste. The keystone of the Breadboard Project has been the Biomass Production Chamber (BPC), which is supported by 15 environmentally controlled chambers and 2150 m2 (23,200 ft2) of laboratory facilities. The Project objectives, in support of the ALS Program, utilize these facilities for large-scale testing of components and development of required technologies for the human testbeds at JSC, flight experiments, and ALS research to enable a Mars mission.
X