Refine Your Search

Search Results

Viewing 1 to 16 of 16
Technical Paper

A Comparative Analysis of Direct Injection into a Pressurized Chamber Using an Automatic Image Treatment Methodology

2016-10-25
2016-36-0163
A multi-hole direct injection injector was studied by means of image analysis. Methodologies based on an automatic process of cone angle measurement and edge detection were applied for the spray images generated by a 100 bar injection pressure discharged into a pressurized rigid chamber. A criterion based on pixel values was taken to localize the spray edges as angular coordinates and also with x and y position data. The high pixel values were associated with liquid phase while the low pixel values were associated to its absence. Computational codes written in MATLAB environment were used to analyze the numerical matrices associated to the images. Using the written MATLAB codes, a comparison of the effect of atmospheric back pressure, inside the chamber, on the spray pattern, cone angle and spray penetration were evaluated. The chamber was pressurized with 2.5, 5.0, 7.5 and 10 bar of back pressure. The tested fluid injected was EXXSOL D60 for simulating ethanol fuel behavior.
Technical Paper

Analysis of Ethanol Spray Produced by Direct Injection into a Single Cylinder Optical Research Engine

2014-09-30
2014-36-0345
Atomization parameters from the spray produced by a direct injection injector, operating into an engine with optical access were analyzed in this work. Parameters such as cone angle, penetration and spray geometry for determined crank angles and different rotations, with the respective variability, were evaluated for ethanol injection. Images from spray injection were captured for the specified rotation conditions for the angle and geometry analysis. For the penetration analysis, the image acquisition occurred with crank angle variation, obtaining a mean value with respect to the spray displacement of a point of maximum concentration on a specified direction. Lines were adjusted to the penetration data and the penetration rates (velocities) were evaluated through its slopes. For the cone angle and geometry study, an automatic routine in Matlab environment for image processing was used.
Technical Paper

Analysis of ethanol spray behavior into a Single Cylinder Optical Research Engine

2020-01-13
2019-36-0223
The work focuses on studying ethanol spray behavior injected directly inside a spark ignited internal combustion engine in the compression stroke. An experimental procedure for measuring spray penetration and spray overall cone angle produced by a multi-hole direct injector was developed by means of computational codes written in Matlab environment for working with images of spray injections and to acquire calculated results in an automatic way. The shadowgraph technique with back continuous illumination associated with a high speed recording image process was used in a single cylinder optical research engine for acquiring images of Brazilian ethanol fuel injected at 120° before the top dead center of compression stroke. The process of spray injections occurred with engine speeds of 1000 rpm, 2000 rpm and 3000 rpm. The results showed that spray penetrations decrease and spray cone angle increase when the engine speed is raised.
Technical Paper

Comparative Analysis of Atomization Microscopic Characteristics of Gasoline and Ethanol in a GDI injector

2015-09-22
2015-36-0299
This study involves the comparison of atomization characteristics of gasoline and ethanol produced by a single-hole gasoline direct injection (GDI) injector. Experiments were performed for the fuel spray characterization, such as: measuring the injected fuel mass flow rate, the droplet velocity and the droplet diameter of atomized fuel as a function of injection pressure. In the injected fuel mass flow rate measurements, an experimental apparatus was used consisting of a nitrogen cylinder, a source of generating pulses, a fuel tank as a pressure vessel and a precision weighing scale. To measure the fuel droplet velocity and droplet diameter, were used the known optical techniques: Laser Doppler Anemometry and Phase Doppler Anemometry (LDA/PDA), respectively. Thus, the performance of fuels can be compared. The average droplet velocity, droplet diameter and characteristic diameter, Sauter Mean Diameter (SMD), were evaluated and analyzed due to the injection pressure.
Technical Paper

Comparative analysis of the internal combustion engine block vibration with gasoline and ethanol fuel

2022-02-04
2021-36-0010
Ethanol and gasoline are widely used with fuels in Otto cycle engines. These fuels have different heating power and octane number and the engine behaves differently depending on the type of fuel used. The objective of this study is to measure, compare and investigate the factors that affect the block vibration of an internal combustion engine as a function of the fuel used ethanol or gasoline. The experiment consisted of instrumenting the side of the engine block with an accelerometer to measure the level of vibration intensity of the engine running on a bench dynamometer varying engine speed and load conditions. The results showed that the engine vibration level increases with the increase in engine speed and load. The highest level of vibration was achieved in the region of maximum torque and maximum pressure combustion. The combustion process is mainly responsible for the highest level of vibration achieved with ethanol.
Technical Paper

Computer Simulation of a Flex-Fuel Engine Running on Different Gasoline-Hydrous Ethanol Blends

2012-10-02
2012-36-0487
Nowadays computer simulation is an important tool to support new internal combustion engine projects, but still further studies are necessary for its use in fuel development. In order to study the influence of fuel properties on engine combustion and emission performance, a computer model was designed based on a Flex-Fuel engine geometric data. Model was validated with experimental tests done on an engine dynamometer. A simulation software was used to simulate the experimental conditions, by using Wiebe two zone combustion and Woschni heat transfer models. In-cylinder maximum pressure, IMEP and emission data were calculated for different gasoline-hydrous ethanol blends at 3875 rpm, 60 Nm and 105 Nm. Total hydrocarbons concentration was simulated comparing the experimental data of hydrocarbons added with unburned ethanol emission measured with a FTIR analyzer.
Technical Paper

Experimental Characterization of Ethanol Sprays from a Single Hole Direct Injection Injector

2015-09-22
2015-36-0373
This study concerns the sprays produced by a single hole direct injection injector through a systematic image treatment methodology. The images were obtained by high speed recording associated with shadowgraph technique. The recording frequency was 6504 Hz. Grayscale images were obtained after a process of histogram adjusting and image subtraction. The spray volume and penetration was evaluated through a process of edge detection in the hollow cone of the spray injection. A criterion based on pixel values was taken to localize the spray edges as angles and x and y position data. The high pixel values were associated with liquid phase while the low pixel values were associated to its absence. Computational codes written in Matlab environment were used to analyze the numerical matrices associated to the images. The high frequency image recording allowed studying the sprays in all its development. The tests were conducted with injection pressure variation.
Technical Paper

Experimental Investigation of Different Hydrous Ethanol-Gasoline Blends on a Flex-Fuel Engine

2010-10-06
2010-36-0469
In Brazilian market, Flex-Fuel vehicles represented over 90% of new light-duty vehicles sold in 2009. These vehicles can use gasoline blended with anhydrous ethanol (20 to 25% v/v), 100% of hydrous ethanol (contains from 6,2 to 7,4% w/w of water) or any blend of these fuels. An experimental investigation was done to study fuel consumption, emissions and in-cylinder pressure data of a Flex-Fuel Otto engine, 1.4 L, 4 cylinders. It used gasoline with 22% of anhydrous ethanol as a reference fuel (E22). E22 was blended with different hydrous ethanol contents such as 50% (H50) and 80% (H80), also a 100% hydrous ethanol H100) was used. The main fuel properties were analyzed as part of this work. To control the engine operation, a programmable ECU (Engine Control Unit) was used, allowing spark timing calibration either for maximum break torque (MBT) or to keep the engine below the knocking limit.
Technical Paper

Experimental Study of Spray Pattern, Tip Penetration and Velocity Profiles of a Gasoline Direct Injection Injector Using High Speed Image Recording and Particle Image Velocimetry

2013-10-07
2013-36-0553
This work shows procedures for analyzing sprays produced by a direct injection injector. The parameters studied were tip penetration, spray pattern, cone angles and velocity profiles. Two different experimental procedures were applied. The first one to get knowledge of the initial stage of injection consisted in recording images in 4000 Hz. With the data obtained, the penetrations and penetration rates were evaluated. The second experimental procedure consisted of using the Particle Image Velocimetry technique to get images and velocity data for getting knowledge of spray pattern, external and internal cone angle and velocity profiles of the spray fully developed. Gasoline and ethanol were the two fluids tested on the experiments. The results showed larger cone angles for gasoline, linear decreasing behavior for velocities on the linear velocity profiles and a transient stage for the magnitude of the velocities in the initial stage of injection.
Technical Paper

In Cylinder Pressure Curve and Combustion Parameters Variability with Ethanol Addition

2012-10-02
2012-36-0486
An experimental investigation was performed on an engine dynamometer to study in cylinder pressure curve and combustion parameters variability with ethanol addition. It was used a Flex-Fuel engine, 1.4 L, 4 cylinders, with a programmable engine control unit to optimize the calibration for different blends of Brazilian gasoline and hydrous ethanol. Engine was calibrated for maximum break torque limited by knocking. In-cylinder pressure was measured by using a pressure sensor installed on the spark plug and analyzed by a combustion data system. Combustion duration, mass fraction burned, indicated mean effective pressure (IMEP) and others were calculated based on in-cylinder pressure curve data. The combustion variability was analyzed from 300 recorded engine cycle for each operating condition. Results for some operating conditions indicated that ethanol addition can reduce combustion variability on a non linear pattern.
Technical Paper

Measuring and Comparing the Ignition Delay Times of Diesel, Ethanol Additive and Biodiesel Using a Shock Tube

2014-09-30
2014-36-0187
A burning process in a combustion chamber of an internal combustion engine is very important to know the maximum temperature of the gases, the speed of combustion, the ignition delay time of fuel and air mixture exact moment at which ignition will occur. The automobilist industry has invested considerable amounts of resources in numerical modeling and simulations in order to obtain relevant information about the processes in the combustion chamber and then extract the maximum engine performance control the emission of pollutants and formulate new fuels. This study aimed to general construction and instrumentation of a shock tube for measuring shock wave. As specific objective was determined reaction rate and ignition delay time of diesel, biodiesel and ethanol doped with different levels of additive enhancer cetane number. The results are compared with the ignition delay times measured for other authors.
Technical Paper

Measuring and Comparing the Ignition Delay Times of Diesel, Ethanol Additive and Biodiesel Using a Shock Tube

2015-04-14
2015-01-0802
A burning process in a combustion chamber of an internal combustion engine is very important to know the maximum temperature of the gases, the speed of combustion, the ignition delay time of fuel and air mixture exact moment at which ignition will occur. The automobilist industry has invested considerable amounts of resources in numerical modeling and simulations in order to obtain relevant information about the processes in the combustion chamber and then extract the maximum engine performance control the emission of pollutants and formulate new fuels. This study aimed to general construction and instrumentation of a shock tube for measuring shock wave. As specific objective was determined reaction rate and ignition delay time of diesel, biodiesel and ethanol doped with different levels of additive enhancer cetane number. The results are compared with the ignition delay times measured for other authors.
Technical Paper

Numerical Analysis of an Internal Combustion Engine Using One-Dimensional Computational Models

2015-09-22
2015-36-0377
One-dimensional models for internal combustion engines analysis are very useful to simulate its systems through a relatively low computational effort. Based on this idea, this paper presents the simulation of a spark-ignition engine using one-dimensional models implemented in object oriented programming by the authors. The model was adapted to simulate a research four valves, single cylinder, spark ignition, reciprocating internal combustion engine. The gas in the cylinder was described by conservation equations, including the momentum conservation equation, that wasn’t found in the checked literature. For the combustion, a two zones model was implemented, based on combustion wave equations, such that detonation and deflagration are calculated by the same set of equations. The flame propagation geometry was considered to be spherical.
Technical Paper

Optimization Performance of Multi-Fuel Spark Ignition Engine using a turbocharging system

2006-11-21
2006-01-2641
The new trends of the automotive market require the development of a new concept of engines using different types of fuel, mainly those resulting from alternative sources of energy. For this purpose those multi-fuel engines must function with higher energy efficiency therefore allowing for lower fuel consumption and a drastic reduction of exhaust emission. The multi-fuel engines available in the market display only one volumetric compression ratio, which leaves ample room for the development of a better level of fuel energy use. To achieve so, such an engine must count on a variable volumetric compression ratio, which, despite being technically possible, is not economically viable for a low cost product. The present project intends to create a system capable of achieving the best performance for all types of fuel through the variation of the boost pressure, viable for a low cost product, without changing its volumetric compression ratio.
Technical Paper

SI Engine Performance and Emissions using Surrogate Fuel for Oxygenated Gasoline

2016-10-25
2016-36-0240
Gasoline is a complex mixture, composed of hundreds of different hydrocarbons. Surrogate fuels decrease the complexity of gasoline and are being used to improve the understanding of internal combustion engines (ICEs) fundamental processes. Computational tools are largely used in ICE development and performance optimization using simple fuels, because it is still not possible to completely model a commercial gasoline. The kinetics and interactions among all the chemical constituents are not yet fully understood, and the computational cost is also prohibitive. There is a need to find suitable surrogate fuels, which can reproduce commercial fuels performance and emissions behavior, in order to develop improved models for fuel combustion in practical devices, such as homogeneous charge compression ignition (HCCI) and spark ignition (SI) engines. Representative surrogate fuels can also be used in fuel development processes.
Technical Paper

Shock Tube for Analysis of Combustion of Biofuels

2013-10-07
2013-36-0300
A burning process in a combustion chamber of an internal combustion engine is very important to know the maximum temperature of the gases, the speed of combustion, and the ignition delay time of fuel and air mixture exact moment at which ignition will occur. The automobilist industry has invested considerable amounts of resources in numerical modeling and simulations in order to obtain relevant information about the processes in the combustion chamber and then extract the maximum engine performance control the emission of pollutants and formulate new fuels. This study aimed to general construction and instrumentation of a shock tube for measuring shock wave. As specific objective was determined reaction rate and ignition delay time of ethanol doped with different levels of additive enhancer cetane number. The results are compared with the delays measured for the ignition diesel and biodiesel.
X