Refine Your Search

Search Results

Viewing 1 to 6 of 6
Technical Paper

Alternative Fuel Transit Bus Evaluation Program Results

1996-05-01
961082
The objective of this program, which is supported by the U.S. Department of Energy (DOE) through the National Renewable Energy Laboratory (NREL), is to provide an unbiased and comprehensive comparison of transit buses operating on alternative fuels and diesel fuel. The information for this comparison was collected from eight transit bus sites. The fuels studied are natural gas (CNG and LNG), alcohol (methanol and ethanol), biodiesel (20 percent blend), propane (only projected capital costs; no sites with heavy-duty propane engines were available for studying operating experience), and diesel. Data was collected on operations, maintenance, bus equipment configurations, emissions, bus duty cycle, and safety incidents. Representative and actual capital costs were collected for alternative fuels and were used as estimates for conversion costs. This paper presents preliminary results.
Technical Paper

Alternative Fuel Truck Evaluation Project - Design and Preliminary Results

1998-05-04
981392
The objective of this project, which is supported by the U.S. Department of Energy (DOE) through the National Renewable Energy Laboratory (NREL), is to provide a comprehensive comparison of heavy-duty trucks operating on alternative fuels and diesel fuel. Data collection from up to eight sites is planned. This paper summarizes the design of the project and early results from the first two sites. Data collection is planned for operations, maintenance, truck system descriptions, emissions, duty cycle, safety incidents, and capital costs and operating costs associated with the use of alternative fuels in trucking.
Technical Paper

Emissions from Trucks and Buses Powered by Cummins L-10 Natural Gas Engines

1998-05-04
981393
Both field research and certification data show that the lean burn natural gas powered spark ignition engines offer particulate matter (PM) reduction with respect to equivalent diesel power plants. Concerns over PM inventory make these engines attractive despite the loss of fuel economy associated with throttled operation. Early versions of the Cummins L-10 natural gas engines employed a mixer to establish air/fuel ratio. Emissions measurements by the West Virginia University Transportable Heavy Duty Emissions Testing Laboratories on Cummins L-10 powered transit buses revealed the potential to offer low emissions of PM and oxides of nitrogen, (NOx) but variations in the mixture could cause emissions of NOx, carbon monoxide and hydrocarbons to rise. This was readily corrected through mixer repair or readjustment. Newer versions of the L-10 engine employ a more sophisticated fueling scheme with feedback control from a wide range oxygen sensor.
Technical Paper

Final Results From The State Of Ohio Ethanol-Fueled Light-Duty Fleet Deployment Project

1998-10-19
982531
The state of Ohio established a project to demonstrate the use of ethanol flexible-fuel vehicles (FFV) in their fleet operations. This study includes ten FFVs and three gasoline vehicles operated by five state agencies. The two-year project included data collection on vehicle maintenance and fueling, cost of operation, and fleet management comments. The project also included emissions testing of two ethanol FFVs and two standard gasoline vehicles.
Technical Paper

Natural Gas and Diesel Transit Bus Emissions: Review and Recent Data

1997-11-17
973203
Natural Gas engines are viewed as an alternative to diesel power in the quest to reduce heavy duty vehicle emissions in polluted urban areas. In particular, it is acknowledged that natural gas has the potential to reduce the inventory of particulate matter, and this has encouraged the use of natural gas engines in transit bus applications. Extensive data on natural gas and diesel bus emissions have been gathered using two Transportable Heavy Duty Vehicle Emissions Testing Laboratories, that employ chassis dynamometers to simulate bus inertia and road load. Most of the natural gas buses tested prior to 1997 were powered by Cummins L-10 engines, which were lean-burn and employed a mechanical mixer for fuel introduction. The Central Business District (CBD) cycle was used as the test schedule.
Technical Paper

Operating Experience and Teardown Analysis for Engines Operated on Biodiesel Blends (B20)

2005-11-01
2005-01-3641
Biodiesel has been used to reduce petroleum consumption and pollutant emissions. B20, a 20% blend of biodiesel with 80% petroleum diesel, has become the most common blend used in the United States. Little quantitative information is available on the impact of biodiesel on engine operating costs and durability. In this study, eight engines and fuel systems were removed from trucks that had operated on B20 or diesel, including four 1993 Ford cargo vans and four 1996 Mack tractors (two of each running on B20 and two on diesel). The engines and fuel system components were disassembled, inspected, and evaluated to compare wear characteristics after 4 years of operation and more than 600,000 miles accumulated on B20. The vehicle case history-including mileage accumulation, fuel use, and maintenance costs-was also documented. The results indicate that there was little difference that could be attributed to fuel in operational and maintenance costs between the B20- and diesel-fueled groups.
X