Refine Your Search

null

Search Results

Viewing 1 to 12 of 12
Technical Paper

Characterization of Knock in a Spark-Ignition Engine

1989-02-01
890156
Spark-ignition engine knock was characterized in terms of when during the engine cycle and combustion process knock occurred and its magnitude or intensity. Cylinder pressure data from a large number of successive individual cycles were generated from a single-cylinder engine of hemispherical chamber design over a range of operating conditions where knock occurred in some or all of these cycles. Mean values and distributions of following parameters were quantified: knock occurrence crank angle, knock intensity, combustion rate and the end-gas thermodynamic state. These parameters were determined from the cylinder pressure data on an individual cycle basis using a mass-burn-rate analysis. The effects of engine operating variables on these parameters were studied, and correlations between these parameters were examined.
Technical Paper

Comparison of NOx Level and BSFC for HPL EGR and LPL EGR System of Heavy-Duty Diesel Engine

2007-08-05
2007-01-3451
Diesel engines are the most commonly used power plant of freight and public transportations in the world. Also, the newly developed injection system, Common Rail system, increases the demands for both light and heavy duty diesel vehicles. On the other hand, stringent emission regulations are being proposed with growing concern on NOx and PM emissions from diesel engines. Future emission regulations require advanced emission control technologies, such as EGR and SCR. Exhaust gas recirculation (EGR) is a commonly used technique to reduce NOx emission. In this paper, a model-based investigation was conducted to compare the effect of high pressure loop (HPL) EGR and low pressure loop (LPL) EGR system on NOx level and BSFC of a heavy-duty diesel engine. A WAVE model was created to simulate EURO 3 engine and each component of the engine was modeled using CATIA and WaveMesher.
Technical Paper

Comparison of Soot Oxidation by NO2 Only and Plasma-Treated Gas Containing NO2, O2, and Hydrocarbons

2002-10-21
2002-01-2704
NO2 is an effective soot oxidizer operating at lower temperatures than O2. The effect of pure NO2 on soot oxidation was evaluated and compared with the gas treated by plasma, which initially consisted of NO, O2, and hydrocarbons. The cutout of a commercial DPF was used and the pressure difference across the DPF was monitored for an hour. The concentration of NO/NO2, CO, CO2 at the outlet of the DPF was measured as a function of time. CO and CO2 concentration was measured periodically by gas chromatography. The experiment was performed at 230, 250, 300, 350°C. When NO2 only was used as an oxidizing agent, there was a close relationship between the decrease of the pressure difference across the DPF, the CO and CO2 concentration at the outlet of the DPF, and the back conversion of NO2 to NO.
Technical Paper

Effect of Fuel Properties on Diesel PM Components

2007-07-23
2007-01-1941
In this study, compositions, size distributions and activation energy in oxidation of diesel PM were investigated. Benzene (C6H6) was mixed to diesel fuel as a promoter of PM formation, and further, ferrocene (Fe(C5H5)2) was added as a promoter for oxidation processes during in-cylinder combustion and after-treatment. The effect of those additions on the PM characteristics was discussed on the basis of measured results such as SOF and dry-soot ratio in PM, primary and aggregate particle size distributions of PM, activation energy of PM oxidation, and PM components with elemental analysis. As a result, it was shown that ferrocene had special effect on the PM size distribution and the activation energy.
Technical Paper

Effect of Hydrogen as an Additive on Lean Limit and Emissions of a Turbo Gasoline Direct Injection Engine

2015-09-01
2015-01-1886
For gasoline engine, thermal efficiency can be improved by using lean burn. However, combustion instability occurs when gasoline engine is operated on lean condition. Hydrogen has features that can be used for improving combustion stability of gasoline engine. In this paper, an experimental study of hydrogen effect on lean limit was carried out using a four-cylinder 2.0L turbo gasoline direct injection engine. The engine torque was fixed at 110Nm on 1600RPM, 2000RPM and 2400RPM. The results showed that lean limit was extended and brake thermal efficiency was improved by hydrogen addition. Especially, at lower engine speed, the large improvement of lean limit was achieved. However, improvement of brake thermal efficiency was achieved at high speed. HC and CO2 emissions were decreased and NO emissions increased with hydrogen addition. CO emissions were slightly reduced with hydrogen addition.
Technical Paper

Effect of various hydrocarbons on the plasma DeNOx process

2001-09-24
2001-01-3515
Effect of various hydrocarbons on the plasma DeNOx process in simulated diesel engine operating conditions is investigated experimentally and theoretically. This paper shows the results of an extensive series of experiments on the NOx conversion effect of various hydrocarbons (methane, ethene, propene, propane) in the plasma. The effects of energy density, temperature, and the initial concentrations of hydrocarbon and oxygen are discussed and the results for each hydrocarbon are compared with one another. The energy required to convert one NO molecule is measured 13.8eV, 16.1eV, 23.2eV, 45.6eV for propene, ethene, propane, methane, respectively when energy density of 25.4J/L is delivered to the mixture of 10% O2, base N2 with 440ppm NO and 500ppm hydrocarbon at 473K, while it is 143.2eV without hydrocarbon. The best NOx conversion effect of propene among the mentioned hydrocarbons is due to the highest reaction rates of propene with O and OH.
Technical Paper

End-Gas Temperature Measurements in a DOHC Spark-Ignition Engine Using CARS

2000-03-06
2000-01-0237
CARS temperature measurements were carried out both in a constant volume combustion chamber and in a spark-ignition engine. The CARS temperature measurement under engine-like condition was validated by comparing the unburned gas temperatures for premixed propane-air flame in a constant volume combustion chamber obtained by CARS with predicted temperatures of 2-zone flame propagation simulation model. There was good agreement between the predicted temperatures and the mean values of 10 CARS measurements. The standard deviation of 10 measurements at each measuring timing was about ±40 K. End-gas temperatures were measured by CARS technique in a conventional 4-cylinder DOHC spark-ignition engine with the engine motoring and firing. The measured motoring temperature matched well with the adiabatic core temperature calculated from the measured cylinder pressure. The engine was fueled with primary reference fuel (PRF80) of 80% iso-octane and 20% n-heptane by volume.
Technical Paper

Flame Propagation and Knock Detection Using an Optical Fiber Technique in a Spark-Ignition Engine

1993-11-01
931906
In this research, an optical system for the detection of the flame propagation under the non-knocking and knocking conditions is developed and applied to a mass produced four cylinder SI engine. The normal flames are measured and analyzed under the steady state operating conditions at various engine speeds. For knocking cycles, the flame front propagations before and after knock occurrence are simultaneously taken with cylinder pressure data. In non-knocking and knocking cycles, flame propagation shows cycle-by-cycle variations, which are quite severe especially in the knocking cycles. The normal flame propagations are analyzed at various engine speeds, and show that the flame front on the exhaust valve side becomes faster as the engine speed increases. According to the statistical analysis, knock occurence location and flame propagation process after knock can be categorized into five different types.
Technical Paper

Hydrogen Effect on the DeNOX Efficiency Enhancement of Fresh and Aged Ag/Al2O3 HC-SCR in a Diesel Engine Exhaust

2011-04-12
2011-01-1278
HC-SCR is more convenient when compared to urea-SCR, since for HC-SCR, diesel fuel can be used as the reductant which is already available onboard the vehicle. However, the DeNOX efficiency for HC-SCR is lower than that of urea-SCR in both low and high temperature windows. In an attempt to improve the DeNOX efficiency of HC-SCR, the effect of hydrogen were evaluated for the fresh and aged catalyst over 2 wt.% Ag/Al₂O₃ using a Euro-4 diesel engine. In this engine bench test, diesel fuel as the reductant was injected directly into the exhaust gas stream and the hydrogen was supplied from a hydrogen bomb. The engine was operated at 2,500 rpm and BMEP 4 bar. The engine-out NOX was around 180 ppm-200 ppm. H₂/NOX and HC₁/NOX ratios were 5, 10, 20, and 3, 6, 9, respectively. The HC-SCR inlet exhaust gas temperatures were around 215°C, 245°C, and 275°C. The catalyst volumes used in this test were 2.5L and 5L for both fresh and aged catalysts.
Technical Paper

Low Temperature Active Regeneration of Soot Using Hydrogen in a Multi-Channel Catalyzed DPF

2010-04-12
2010-01-0562
Diesel particulate filter (DPF) systems are being used to reduce the particulate matter emissions of diesel vehicles. The DPF should be regenerated after certain driving hours or distance to eliminate soot in the filter. The most widely used method is active regeneration with oxygen at 550~650°C. Fuel penalty occurs when the exhaust gas temperature is increased. The low temperature oxidation technique is needed to reduce fuel consumption. In this study, we found that hydrogen could be used to decrease the PM oxidation temperature significantly on a catalyzed DPF (CDPF). The oxidation characteristics of PM with hydrogen supplied to CDPF were studied using a partial flow system. The partial flow system was used to control temperature and a flow rate independently. The CDPF was coated with Pt/Al₂O₃ 25g/ft₃, and a multi-channel CDPF (MC CDPF) with a square cross section of 1.65 cm width and length of 10 cm was used.
Technical Paper

Measurement and Analysis of Knock in a SI Engine Using the Cylinder Pressure and Block Vibration Signals

1994-03-01
940146
In this study, spark-ignition engine knock was studied experimentally. Cylinder pressure and cylinder block vibration of a four cylinder SI engine were measured. Knock characteristics, such as knock intensity, knock cycle percentage, knock occurrence crank angle, were determined from pressure and vibration signals using different analysis methods. Methods using band-pass filter, third derivative and step method, which was developed in this study, were shown to be the most suitable. The step method only used signals above threshold value during knocking and, as a result, both pressure and vibration signal analysis results with this method showed good signal-to-noise ratio. The knock intensities calculated from cylinder pressure and block vibration were proportional to each other over a wide range. It was confirmed in this study that vibration signals were useful in knock detection.
Technical Paper

Spark-Ignition Engine Knock Control and Threshold Value Determination

1996-02-01
960496
Knock control algorithms were developed for a spark-ignition engine. Spark timing was controlled using cylinder block vibration signal. The vibration signal of a 1.5 L four cylinder spark-ignition engine was measured using an accelerometer which was attached to the cylinder block. The maximum amplitude of the bandpass-filtered accelerometer signals was used as the knock intensity. Three different spark-ignition engine knock control algorithms were tested experimentally. Two algorithms were conventional algorithms in which knock threshold values were predetermined for each engine condition. Spark timing was retarded and advanced depending on the knock intensity in one algorithm and the knock occurrence interval in the other algorithm. The third algorithm was a new algorithm in which knock threshold values were automatically corrected by monitoring knock condition.
X