Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Cadaver and Dummy Knee Impact Response

1976-02-01
760799
Knee impacts along the femoral axis of unembalmed male cadavers and Part 572 dummies were made with rigid pendulum impactors at Wayne State University. The dummy exhibited significantly higher knee impact forces than the cadaver subjects. This difference of response is shown to be due to differences of effective leg mass and knee padding. The dummy with its heavy rigid metal skeleton is not like its human counterpart, where the majority of the leg weight is composed of loosely coupled flesh. The knee impacts of the dummy subjects showed that the dummy femur transducer force was consistently less than the corresponding dummy knee impact force by a constant ratio of 0.8. We recommend that the “skeletal” weight of the Part 572 dummy leg should be substantially reduced, with the weight difference being added to a properly simulated leg flesh. Also, the simulated flesh covering of the knee should be modified to reduce the peak force resulting from rigid body impacts.
Technical Paper

Investigation of the Kinematics and Kinetics of Whiplash

1967-02-01
670919
The kinematics of rear-end collisions based on published acceleration pulses of actual car-to-car collisions (10 and 23 mph) were reproduced on a crash simulator using anthropomorphic dummies, human cadavers, and a volunteer. Comparison of the responses of subjects without head support were based on the reactions developed at the base of the skull (occipital condyles). The cadavers gave responses which were representative of persons unaware of an impending collision. The responses of both dummies used were not comparable with those of the cadavers or volunteer, or to each other. An index based on voluntary human tolerance limits to statically applied head loads was developed and used to determine the severity of the simulations for the unsupported head cases. Results indicated that head torque rather than neck shear or axial forces is the major factor in producing neck injury.
X