Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

A Theoretical Analysis about Multiple Actuation Systems Efficiency

2008-10-07
2008-01-2677
This paper studies the dependency of the total efficiency of a multiple actuation hydraulic system on the operating conditions as well as on the control strategies applicable to control valves. In particular, with respect to the parallel connection among hydraulic actuators managed by proportional control valves, a general structure of the functional relationship correlating the hydraulic power provided by the supply unit and the mechanical power exerted by actuators is proposed and used to determine the operating point and the system overall efficiency. Afterwards, the dependency of the system behavior on external load variations and on valves control is assessed, and the influence of a modification of the operating conditions on the overall efficiency is highlighted. Finally, the validity limits of some compensating corrections are determined.
Journal Article

Cavitating Flows in Hydraulic Multidimensional CFD Analysis

2008-10-07
2008-01-2678
The effect of cavitation plays a fundamental role in the hydraulic components design and the capability of predicting its causes and characteristics is fundamental for the optimization of fluid systems. In this paper, a multidimensional CFD approach is used to analyze the cavitating phenomena typical of hydraulic components using water as operating fluid. An open source fluid-dynamics code is used and the original cavitation model (based on a barotropic equation of state and homogeneous equilibrium assumption) is extended in order to account also for gases dissolved in the liquid medium. The effect of air dissolution into liquid water is modeled by introducing the Henry law for the equilibrium condition, and the time dependence of solubility is calculated on a Bunsen Coefficient basis. Furthermore, a simplified approach to turbulence modeling for compressible flows is coupled to the cavitation model and implemented into the CFD code.
Technical Paper

The Influence of Cavitation and Aeration in a Multi-Fuel Injector

2008-10-06
2008-01-2390
The internal flow field of a low pressure common rail type multi-fuel injector is analyzed by means of numerical simulation and particular attention is devoted to the cavitation and aeration phenomena when using different fuel mixtures. The fluid-dynamics open source OpenFOAM code is used; and the original cavitation model (based on a barotropic equation of state and homogeneous equilibrium assumption) is extended in order to account also for gases dissolved in the liquid medium. The effect of air dissolution into liquid is determined by introducing the Henry law for the equilibrium condition and the time dependence of solubility is calculated on a Bunsen Coefficient basis. A preliminary study of test cases available in literature is carried out to address the model predictive capabilities and grid dependency. The calculated pressure distribution and discharge coefficient for different nozzle shapes and operating conditions are compared with the referenced experimental measurements.
X