Refine Your Search

Search Results

Viewing 1 to 7 of 7
Technical Paper

An Overview of VCR Technology and Its Effects on a Turbocharged DI Engine Fueled with Ethanol and Gasoline

2017-11-07
2017-36-0357
The possibility to vary compression ratio offers a new degree of freedom that may enable so far not exploited benefits for the combustion process especially for highly boosted spark ignited engines. Numerous approaches to enable a variable compression ratio (VCR) have been tried and tested in the past. Nevertheless, none of these systems reached series production because of several reasons, ranging from too much complexity and moveable parts to deep modification required on existing engine architectures and manufacturing lines. Instead, the approach of a variable length conrod (VCR conrod) could be the solution for integration in almost any type of engine with minor modifications. It is then considered by several OEMs as a promising candidate for midterm series production. This paper shows, firstly, a discussion of the benefits of a variable compression ratio system.
Technical Paper

Design and optimization of the intake system of a Formula SAE race engine

2020-01-13
2019-36-0253
Several motorsport competitions impose restrictions on intake systems to limit maximum engine power. Since the restriction interferes with the efficiency of the intake system as a whole, it is necessary to study ways to minimize the negative effect of changes in engine performance. In practice, the regulation imposes restrictions to the inlet air which motivates the search for the minimum pressure loss in the restrictor while maintaining an equal volumetric efficiency between the cylinders. This way, it is necessary to tune the duct lengths and diameters, and plenum volume to obtain the maximum volumetric efficiency in the most required speeds. Formula SAE competition imposes an intake system restriction of 20 mm or 19 mm diameter (for gasoline or ethanol fueled engines, respectively). Thus, to reduce pressure loss in the imposed restriction orifice, a system with a convergent divergent duct forming a venturi tube was used.
Technical Paper

Efficient Ethanol Engines in Agricultural Aviation

2010-10-06
2010-36-0398
The aim of this paper is to show that the gains, technical and/or economical, from the use of ethanol as fuel in agricultural aviation may be even greater if the aircraft engine is specially designed for that purpose. A specific design is also necessary if it is intended to achieve a truly "green" engine, neutral regarding carbon emissions. Using available technologies, computational tools, development methods and project management methods (Reference Model for Agricultural Machinery Development Process (RM-AMDP), the engine can be fully developed to be used specifically as an agricultural aircraft propellant operating with ethanol. In Brazil, the current fleet of agricultural airplanes has around 1500 aircrafts and almost all operating with AvGas (Aviation Gasoline). There is already in Brazil a "green" airplane, manufactured by Neiva, a subsidiary of the aircraft manufacturer Embraer. This model uses a conversion kit on the original engine to use ethanol as fuel.
Technical Paper

Experimental Studies of a 4-Stroke Multi-Cylinder Gasoline Engine with Controlled Auto-Ignition (CAI) Combustion

2007-11-28
2007-01-2609
Controlled Auto-Ignition (CAI), also known as HCCI (Homogeneous Charge Compression Ignition), is increasingly seen as a very effective way of lowering both fuel consumption and emissions from gasoline engines. Therefore, it's seen as one of the best ways to meet future engine emissions and CO2 legislations. This combustion concept was achieved in a Ford production, port-injected, 4 cylinder gasoline engine. The only major modification to the original engine was the replacement of the original camshafts by a new set of custom made ones. The CAI operation was accomplished by means of using residual gas trapping made possible by the use of VCT (variable cam timing) on both intake and exhaust camshafts. When running on CAI, the engine was able to achieve CAI combustion with in a load range of 0.5 to 4.5 BMEP, and a speed range of 1000 to 3500 rpm. In addition, spark assisted CAI operation was employed to extend the operational range of low NOx and low pumping loss at part-load conditions.
Technical Paper

G Index: A Novel Knock Detection Method that is Simpler and Calibration-Free, Based on Angular Position of Combustion Parameters

2022-03-29
2022-01-0479
Stringent emission legislations have pushed engine operation to borderline knock. Knocking combustion limits engine efficiency, putting a threshold in carbon emission reduction that impairs further decarbonization of the transport sector. In this way, online knock monitoring is very important during engine development and calibration to allow operation with higher efficiency levels. Commonly, knock detection methods require complex calculations with high computational cost. Furthermore, these methods normally need previous calibration of a threshold value for each specific engine to indicate the knock limit, requiring important engineering resources and time. Hence, this paper proposes a novel methodology for knock detection that is simple, does not require prior calibration and can be used for sensorless knock detection. The method is applied by relating the crank angle of maximum pressure rise rate (AMPRR) with the angle of 50% of fuel mass burned (CA50), the so-called G Index (GI).
Technical Paper

Investigation of ignition delay times for ethanol and the Brazilian gasoline

2022-02-04
2021-36-0054
The prediction of ignition delay times is very useful during the development phase of internal combustion engines. When it comes to biofuels such as ethanol and its blends with gasoline, its importance is enhanced, especially when it comes to flex-fuel engines and the need to address current and future emissions legislations and efficiency goals. The ignition delay time measured as the angular difference between the spark discharge time, as commanded by the ECU and a relevant fraction of fuel mass burned (usually, 2, 5 or 10%). Experimental tests were performed on a downsized state-of-the-art internal combustion engine. Engine speed of 2500 rpm, with load of 6 and 13 bar IMEP were set for investigation. Stoichiometric operation and MBT or knock-limited spark timings were used, while valve overlap was varied, in order to address the effects of scavenging and residuals on ignition delay times.
Journal Article

Low Cost Wet Ethanol for Spark-Ignited Engines: Further Investigations

2015-04-14
2015-01-0954
This study evaluates the performance of an ethanol fueled spark ignited engine running with high levels of hydration. Ethanol is a renewable fuel and has been considered a promising alternative to counteract global warming and to reduce pollutant emissions. Its use is well established in ICE as the main fuel or blended with gasoline. However, due to its lower calorific value, it shows increased fuel consumption when compared to gasoline, rendering its use sometimes less attractive. The energy demand to produce ethanol, especially at the distillation phase, increases exponentially as the concentration of ethanol-in-water goes from 80% onwards. Thus, mixtures with less than 80% of ethanol-in-water would reduce the energy consumption during production, yielding a less expensive fuel. In previous studies, to evaluate the feasibility of wet ethanol as a fuel for spark-ignited engines, results have shown that it was possible to use mixtures of up to 40% of water-in-ethanol.
X