Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Comparative Assessment of DPFs of Different Materials: A Case Study on a Euro I Light Duty Truck

2001-03-05
2001-01-1287
A test protocol, allowing for the evaluation of diesel particulate filters of different materials and of different sizes, located at various distances from the engine was developed. A total of 13 filter configurations were tested on a Euro I naturally aspirated diesel light duty truck with a fully passive trap system, utilizing only cerium-based additive in the fuel. It was proved that regeneration under constant urban driving conditions was always possible, at an exhaust gas temperature at the trap inlet in the range of 250 - 350°C. On a gravimetric basis, the efficiency of the traps tested concerning PM was in the order of 45 - 80% over the NEDC, depending on trap material and location along the exhaust pipe and reflecting the specific composition of the PM generated by the vehicle. No major effect on gaseous emissions (HC, NOx and CO) was observed.
Technical Paper

Regeneration of DPF at Low Temperatures with the Use of a Cerium Based Fuel Additive

1996-02-01
960135
A light duty truck with a naturally aspirated engine was equipped with a DPF (changing the exhaust pipe and eliminating the muffler) and operated on fuel doped with a cerium based additive in various concentrations. Tests were carried out on chassis dynamometer using the European urban cycle, but also under city driving conditions with maximum speeds up to 50 km/h and exhaust gas temperature up to 300°C. Under these conditions, it was observed that filter regeneration was always possible at relatively high particulate accumulation in the filter, while the effect on fuel consumption (as measured over the emission test cycles) was not detectable, compared to baseline data of the vehicle. Change in driving conditions from slow urban to highway with highly loaded trap led to spontaneous trap regeneration at higher temperatures, without effect on fuel consumption. This paper documents the operation of a fully passive DPF system for diesel light duty vehicles.
X