Refine Your Search

Search Results

Viewing 1 to 5 of 5
Technical Paper

A Dynamometer Study of Off-Cycle Exhaust Emissions - The Auto/Oil Air Quality Improvement Research Program

1997-05-01
971655
Four vehicle fleets, consisting of 3 to 4 vehicles each, were emission tested on a 48″ roll chassis dynamometer using both the FTP urban dynamometer driving cycle and the REP05 driving cycle. The REP05 cycle was developed to test vehicles under high speed and high load conditions not included in the FTP. The vehicle fleets consisted of 1989 light-duty gasoline vehicles, 1992-93 limited production FFV/VFV methanol vehicles, 1992-93 compressed natural gas (CNG) vehicles and their gasoline counterparts, and a 1992 production and two prototype ethanol FFV/VFV vehicles. All vehicles (except the dedicated CNG vehicles) were tested using Auto/Oil AQIRP fuels A and C2. Other fuels used were M85 blended from A and C2, E85 blended from C1, which is similar to C2 but without MTBE, and four CNG fuels representing the range of in-use CNG fuels. In addition to bag measurements, tailpipe exhaust concentration and A/F data were collected once per second throughout every test.
Technical Paper

Effects of Oxygenated Fuels and RVP on Automotive Emissions - Auto/Oil Air Quality Improvement Program

1992-02-01
920326
Exhaust and evaporative emissions were measured as a function of gasoline composition and fuel vapor pressure in a fleet of 20 1989 vehicles. Eleven fuels were evaluated; four hydrocarbon only, four splash blended ethanol fuels (10 vol %), two methyl tertiary-butyl ether (MTBE) blends (15 vol %) and one ethyl tertiary-butyl ether (ETBE) blend (17 vol %). Reid vapor pressures were between 7.8 and 9.6 psi. Exhaust emission results indicated that a reduction in fuel Reid vapor pressure of one psi reduced exhaust HC and CO. Adding oxygenates reduced exhaust HC and CO but increased NOx. Results of evaporative emissions tests on nineteen vehicles indicated a reduction in diurnal emissions with reduced Reid vapor pressure in the non-oxygenated and ethanol blended fuels. However, no reduction in diurnal emissions with the MTBE fuel due to Reid vapor pressure reduction was observed. Reducing Reid vapor pressure had no statistically significant effect on hot soak emissions.
Technical Paper

Emissions with Reformulated Gasoline and Methanol Blends in 1992 and 1993 Model Year Vehicles

1994-10-01
941969
Exhaust and hot soak evaporative emissions were measured in a fleet of 1993 production flexible/variable-fueled vehicles on methanol fuels blended with a reformulated gasoline. A fleet of 1993 California Tier 1 gasoline vehicles was also tested on the same reformulated gasoline blended to meet the specifications of California Phase 2 fuel. Ozone-forming reactivity, expressed as reactivity weighted emissions and specific reactivity, was calculated using 1991 SAPRC and 1994 CBM MIR and MOR factors. Within the FFV/VFV fleet, FTP exhaust and reactivity weighted emissions were significantly lower by 18 to 32% with Phase 2 gasoline relative to Industry Average gasoline. With the exception of greater NMOG emissions with the M85 blends, and lower OMHCE emissions with M85 blended with Industry Average gasoline, exhaust organic emissions, CO and NOx with the methanol fuels were not significantly different than their base gasolines.
Technical Paper

Fuel Composition Effects on Automotive Fuel Economy - Auto/Oil Air Quality Improvement Research Program

1993-03-01
930138
Fuel economy measurements from portions of Phase I of the Auto/Oil Air Quality Improvement Research Program were analyzed. The following fuel variables were examined: aromatics, olefins, T90, RVP, and various oxygenates (MTBE, ETBE and ethanol). Two vehicle fleets were tested: twenty 1989 vehicles and fourteen 1983-1985 vehicles. Three measures of fuel economy were analyzed. EPA Fuel Economy used the calculation defined in the Federal Register and is an attempt to correct for changes in fuel properties. Volumetric Fuel Economy is based on a carbon balance calculation and is a measure of the actual volume of gasoline burned. Energy Specific Fuel Economy is a measure of fuel economy based on energy content. The following fuel changes resulted in reductions of Volumetric Fuel Economy in both fleets: reduced aromatics, reduced olefins, reduced T90, and addition of oxygenates. Changes in RVP did not have a significant effect on fuel economy.
Technical Paper

The Effects of Methanol/Gasoline Blends on Automobile Emissions

1992-02-01
920327
This report presents the Auto/Oil AQIRP results of a methanol fueled vehicle emission study. Nineteen early prototype flexible/variable fueled vehicles (FFV/VFV) were emission tested with industry average gasoline (M0), an 85% methanol-gasoline blend (M85), and a splash-blend of M85 with M0 (gasoline) giving 10% methanol (M10). Vehicle emissions were analyzed for the FTP exhaust emissions, SHED diurnal and hot soak evaporative emissions, and running loss evaporative emissions. Measurements were made for HC, CO and NOx emissions and up to 151 organic emission species, including air toxic components. M0 and M10 emissions were very similar except for elevated M10 evaporative emissions resulting from the high M10 fuel vapor pressure. M85 showed lower exhaust emissions than M0 for NMHC (non-methane hydrocarbon), OMHCE (organic material hydrocarbon equivalent), CO and most species. M85 had higher exhaust emissions for NMOG (non-methane organic gases), NOx, methanol and formaldehyde.
X