Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Investigating the Effect of Operating Variables and Engine Lubricant Viscosity on Engine Friction- A DOE Approach

2011-10-06
2011-28-0052
Engine components are exposed to various lubrication regimes such as hydrodynamic, elasto-hydrodynamic, boundary and mixed lubrication during engine operation. In each of these regimes, the factors which influence engine friction are different. Hydrodynamic friction is influenced by lubricant rheology, film thickness and sliding speed of interacting surfaces, whereas boundary and elasto-hydrodynamic friction is a function of surface properties like roughness and hardness and the type of friction modifier used in engine lubricant. So the principal factors which influence engine friction power are speed, load, surface topography of engine components, oil viscosity, oil temperature and type of friction modifiers used. Experimental studies on an off-highway diesel engine were conducted to investigate the effect of engine oil viscosity and engine operating conditions on engine friction power.
Technical Paper

Modeling of Spray-Swirl Interaction in DI Diesel Engine - Influence of Injection Characteristics

1989-09-01
891914
A mathematical model based on turbulent gas jet theory was used to study spray-swirl interaction in direct injection diesel engine. Vectorial approach was used to predict the momentum change in two directions (i) along the spray centre-line and (ii) normal to the centre-line. Effect of changes in air density and swirl velocity during compression was accounted for. Effect of different injection parameters viz. nozzle size, injection rates, duration of injection, shape of injection rate curve, location of injector in the cylinder head and spray angle was studied on spray penetration, spread, air entrainment and momentum ratio of spray to air etc. Initial rate of injection and mass averaged injection pressure play significant role in air-fuel mixing for spray injected from side of the cylinder, whereas the initial rate of injection dominates the mixing for central injection. Nozzle orifice size does affect fuel-air mixing but it is predominantly controlled by the injection pressure.
X