Refine Your Search

Search Results

Viewing 1 of 1
Technical Paper

Turbulent Self-Ignition and Combustion Modeling in Diesel Engines

1999-03-01
1999-01-1176
The high pressure injectors used in direct injection Diesel engines introduce major perturbations in the air flow field inside the combustion chamber leading to strongly strained and turbulent flow. This fuel/air mixing process plays a critical role in enhancing self-ignition. However, in most Diesel combustion models, the interaction between turbulent mixing and self-ignition is not directly taken into account. Typically, the calculated average self-ignition combustion rates are pseudo laminar reaction rates based on simplified kinetic mechanisms. The mean values of the reaction rate are determined as a function of the mean values of the reactant concentrations and temperature. But due to the high non linearity of the reaction rate during self-ignition, this assumption is not valid. A turbulent self-ignition model developed from direct numerical simulations is presented.
X