Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Ambient Temperature Light-off Aftertreatment System for Meeting ULEV Emission Standards

1998-02-23
980421
It has long been recognized that the key to achieving stringent emission standards such as ULEV is the control of cold-start hydrocarbons. This paper describes a new approach for achieving excellent cold-start hydrocarbon control. The most important component in the system is a catalyst that is highly active at ambient temperature for the exothermic CO oxidation reaction in an exhaust stream under net lean conditions. This catalyst has positive order kinetics with respect to CO for CO oxidation. Thus, as the concentration of CO in the exhaust is increased, the rate of this reaction is increased, resulting in a faster temperature rise over the catalyst.
Technical Paper

Development of Thermally Durable Cu/SCR Catalysts

2009-04-20
2009-01-0899
Selective catalytic reduction (SCR) of NOx by NH3 is under intensive development as a technology to enable diesel engines to meet stringent NOx emission regulations. Cu/zeolite SCR catalysts are leading candidates because of their ability to catalyze NOx reduction at the low temperatures encountered on many diesel vehicles. However, both engine evaluation and laboratory studies indicated that commonly available Cu/zeolite SCR catalysts did not have sufficient thermal stability to maintain performance during the full useful life of a vehicle (with steady-state NOx conversion decreasing ~ 10% over 64 hours of hydrothermal aging at 670 °C). Characterization of aged Cu/zeolite catalysts revealed that the loss of zeolite acidity was the main deactivation mechanism; while the zeolite support maintained its framework structure and surface area after aging. Improvement of the hydrothermal stability of the acid sites resulted in a new generation of SCR catalysts.
X