Refine Your Search

Search Results

Viewing 1 to 4 of 4
Technical Paper

Light-Duty Diesel NOx-HC-Particulate Trade-Off Studies

1980-02-01
800335
The emission control potential of typical divided chamber, light-duty Diesel engines was investigated by using engine dynamometer mapping tests, vehicle tests with engines modified to implement selected control strategies for reduced emission levels, experiments with combustion system modifications, and evaluations of techniques for the exhaust treatment of particulate emissions. A dynamometer mapping program was conducted on a Diesel engine with a swirl chamber combustion system to determine the emission control capability with modulated EGR and fuel injection timing. Emission projections from mapping tests, confirmed by selected vehicle test results, indicated that the low mileage engineering objectives assumed for the .41/3.4/1.0/.6 gm/mi HC/CO/NOx/particulate emission level may be approached in experimental laboratory vehicles up to 3000 lb. inertia weight with optimized control systems.
Technical Paper

Some Factors Affecting Gas Turbine Passenger Car Emissions

1972-02-01
720237
The intent of this paper is to put into proper perspective the relationships among the vehicle, the thermodynamic cycle, and the combustion process as they relate to exhaust emissions from a gas turbine-powered passenger car. The influence of such factors as car size, installed power, regeneration, and other cycle variables on level road load fuel economy, and on the production of oxides of nitrogen and carbon monoxide, are examined. In limited checks against experimental data, the mathematical model of the combustor used in this study has proved to be a reliable indicator of emission trends. The calculated emission levels are not final, however, with deficiencies subject to improvement as new combustor concepts are developed.
Technical Paper

The Ford PROCO Engine Update

1978-02-01
780699
The Ford PROCO stratified charge engine combines the desirable characteristics of premixed charge and Diesel engines. The outstanding characteristics of premixed charge engines are their high specific output, wide speed range, light weight and easy startability but they exhibit only modest fuel economy and relatively high exhaust emissions. The desirable characteristic of the Diesel engine is its outstanding fuel economy. However, the disadvantages of the Diesel, which include noisy operation, limited speed range, exhaust odor, smoke, hard startability, and particulate emissions have tended to limit their acceptance. In the gasoline fueled, PROCO stratified charge engine, direct cylinder fuel injection permits operation at overall lean mixture ratios and higher compression ratio. These features enable the PROCO engine to achieve brake specific fuel consumption values in the range of prechamber diesel engines.
Technical Paper

Thermal and Catalytic Regeneration of Diesel Particulate Traps

1983-02-01
830083
Thermal and catalytic techniques for regenerating particulate traps were assessed. The thermal technique used a burner which heated engine exhaust to the ignition temperature of the particulates to achieve over 90% regeneration effectiveness. HC, CO and particulate emissions resulting from combustion of particulates and burner exhaust were 25 to 50% of the allowable vehicle emissions for one CVS cycle. The fuel consumed by the burner was 9% of the fuel consumed by a vehicle over one CVS cycle. Problems with burner nozzle clogging, ignition reliability, trap durability and control system requirements were identified. In the catalytic technique, Diesel fuel containing .5 gm/gal lead and .25 gm/gal copper lowered the ignition temperature of the particulates by 425°F so that periodic regeneration occurred. The trap collected nearly all of the lead and copper resulting in limited trap life, and deposits on the engine fuel nozzles tended to increase HC emissions.
X