Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Newly Developed Cordierite Honeycomb Substrate for SCR Coating Realizing System Compactness and Low Backpressure

2012-04-16
2012-01-1079
Ammonia Selective Catalytic Reduction (SCR) and Lean NOx Trap (LNT) systems are key technologies to reduce NOx emission for diesel on-highway vehicles to meet worldwide tighter emission regulations. In addition DeNOx catalysts have already been applied to several commercial off-road applications. Adding the DeNOx catalyst to existing Diesel Oxidation Catalyst (DOC) and Diesel Particulate Filter (DPF) emission control system requires additional space and will result in an increase of emission system back pressure. Therefore it is necessary to address optimizing the DeNOx catalyst in regards to back pressure and downsizing. Recently, extruded zeolite for DeNOx application has been considered. This technology improves NOx conversion at low temperature due to the high catalyst amount. However, this technology has concerned about strength and robustness, because the honeycomb body is composed of catalyst.
Technical Paper

Product Design and Development of Ultra Thin Wall Ceramic Catalytic Substrate

2002-03-04
2002-01-0350
Development of the ultra thin wall ceramic catalytic substrate is necessary to meet increasingly strict emissions regulations. The cell walls need to be thinner in order to improve the warm-up characteristics related to the reduction of emissions and to lower the back pressure. However, the thinner the wall thickness, the smaller the mechanical strength of the substrate becomes. For substrates with 2.5mil wall thickness, we densified a conventional material with 35% porosity to less than 30%[1] to improve erosion resistance. Furthermore, for substrates less than 2.5mil wall thickness, a denser material and strengthened end surface is necessary to protect against erosion. In addition to that, we think that a reinforced periphery is necessary for isostatic strength. In this paper, we evaluated the effect of a densified material, strengthened end surface, and a reinforced periphery.
X