Refine Your Search

Topic

Search Results

Journal Article

A Combination of Intelligent Tire and Vehicle Dynamic Based Algorithm to Estimate the Tire-Road Friction

2019-04-08
Abstract One of the most important factors affecting the performance of vehicle active chassis control systems is the tire-road friction coefficient. Accurate estimation of the friction coefficient can lead to better performance of these controllers. In this study, a new three-step friction estimation algorithm, based on intelligent tire concept, is proposed, which is a combination of experiment-based and vehicle dynamic based approaches. In the first step of the proposed algorithm, the normal load is estimated using a trained Artificial Neural Network (ANN). The network was trained using the experimental data collected using a portable tire testing trailer. In the second step of the algorithm, the tire forces and the wheel longitudinal velocity are estimated through a two-step Kalman filter. Then, in the last step, using the estimated tire normal load and longitudinal and lateral forces, the friction coefficient can be estimated.
Journal Article

A Combined Experimental and Numerical Analysis on the Aerodynamics of a Carbon-Ceramic Brake Disc

2024-01-04
Abstract Composite ceramic brake discs are made of ceramic material reinforced with carbon fibers and offer exceptional advantages that translate directly into higher vehicle performance. In the case of an electric vehicle, it could increase the range of the vehicle, and in the case of conventional internal combustion engine vehicles, it means lower fuel consumption (and consequently lower CO2 emissions). These discs are typically characterized by complex internal geometries, further complicated by the presence of drilling holes on both friction surfaces. To estimate the aerothermal performance of these discs, and for the thermal management of the vehicle, a reliable model for predicting the air flowing across the disc channels is needed. In this study, a real carbon-ceramic brake disc with drilling holes was investigated in a dedicated test rig simulating the wheel corner flow conditions experimentally using the particle image velocimetry technique and numerically.
Journal Article

A Comprehensive Rule-Based Control Strategy for Automated Lane Centering System

2022-04-18
Abstract To address the comfort and safety concerns related to driving vehicles, the Advanced Driver Assistance System (ADAS) is gaining huge popularity. The general architecture of autonomous vehicles includes perception, planning, control, and actuation. This article aims mainly at the controls aspect of one of the emerging ADAS features Lane Centering System (LCS). Limitations in deploying this feature from a controls point of view include maintaining the lane center with winding curvatures, dealing with the dynamic environment, optimizing controls where the perception of lane boundaries is erroneous, and, finally, concurring with the driver’s preferences. Although some research is available on LCS controls, most works are related only to the lateral controls by actuating steering. To increase the robustness, a comprehensive control strategy that involves lateral control, as well as longitudinal control along with a novel strategy to select the mode of driving, is proposed.
Journal Article

A Comprehensive Study of Vibration Suppression and Optimization of an Electric Power Steering System

2021-02-11
Abstract Electric power steering (EPS) systems have become the most advantageous steering system used in vehicles. They provide better fuel efficiency and a more compact design over traditional hydraulic power steering (HPS) systems. However, EPS systems are afflicted with unwanted noise and vibration that can undermine the safety of drivers. This article presents a mathematical framework for vibration analysis in a column-type EPS system. The steering column is modeled as a continuous clamped column. The equations of motion are derived using Hamilton’s principle, and explicit expressions are presented for the frequency and transmissibility equations. A three-degrees-of-freedom (3-DOF) dynamic model is also presented by an approximation of the stiffness, damping, and mass of the steering column. The results of the proposed analytical models are validated using ANSYS simulation.
Journal Article

A Coupling Capacitor Double-Resonance Topology for Electric-Field Coupled Power Transfer System Using Vehicle Tire

2021-11-03
Abstract The electric-field coupled power transfer (ECPT) system with a coupling capacitor double-resonance circuit is proposed for electric vehicle (EV) charging. The article analyzes the plate capacitors between the EV and ground copperplate and introduces the coupling capacitor double-resonance circuit. The two-port network impedance matching of two topologies coupling capacitor double resonance is simulated, and then double side L impedance matching network and coupling capacitor double resonance with Series-Series (S-S) topology are proposed to solve the transmission efficiency decrease led by plate capacitances’ fluctuation. A prototype of the ECPT system is designed and built to prove the validity of the proposed methods. It is shown that the ECPT system realized higher than 60 W of electrical power, which is dynamic wireless transferred through the tire steel belt and the ground copperplate with at least 88% efficiency when the tires are rolling.
Journal Article

A Data-Driven Greenhouse Gas Emission Rate Analysis for Vehicle Comparisons

2022-04-13
Abstract The technology focus in the automotive sector has moved toward battery electric vehicles (BEVs) over the last few years. This shift has been ascribed to the importance of reducing greenhouse gas (GHG) emissions from transportation to mitigate the effects of climate change. In Europe, countries are proposing future bans on vehicles with internal combustion engines (ICEs), and individual United States (U.S.) states have followed suit. An important component of these complex decisions is the electricity generation GHG emission rates both for current electric grids and future electric grids. In this work we use 2019 U.S. electricity grid data to calculate the geographically and temporally resolved marginal emission rates that capture the real-world carbon emissions associated with present-day utilization of the U.S. grid for electric vehicle (EV) charging or any other electricity need.
Journal Article

A Design Optimization Process of Improving the Automotive Subframe Dynamic Stiffness Using Tuned Rubber Mass Damper

2024-04-18
Abstract Automotive subframe is a critical chassis component as it connects with the suspension, drive units, and vehicle body. All the vibration from the uneven road profile and drive units are passed through the subframe to the vehicle body. OEMs usually have specific component-level drive point dynamic stiffness (DPDS) requirements for subframe suppliers to achieve their full vehicle NVH goals. Traditionally, the DPDS improvement for subframes welded with multiple stamping pieces is done by thickness and shape optimization. The thickness optimization usually ends up with a huge mass penalty since the stamping panel thickness has to be changed uniformly not locally. Structure shape and section changes normally only work for small improvements due to the layout limitations. Tuned rubber mass damper (TRMD) has been widely used in the automotive industry to improve the vehicle NVH performance thanks to the minimum mass it adds to the original structure.
Journal Article

A Direct Yaw-Moment Control Logic for an Electric 2WD Formula SAE Using an Error-Cube Proportional Derivative Controller

2020-07-26
Abstract A Direct Yaw-Moment Control (DYC) logic for a rear-wheel-drive electric-powered vehicle is proposed. The vehicle is a Formula SAE (FSAE) type race car, with two electric motors powering each rear wheel. Vehicle baseline balance is neutral at low speeds, for increased maneuverability, and increases understeering at high speeds (due to the aerodynamic configuration) for stability. A controller that can deal with these yaw response variations, modelling uncertainties, and vehicle nonlinear behavior at limit handling is proposed. A two-level control strategy is considered. For the upper level, yaw rate and sideslip angle are considered as feedback control variables and a cubic-error Proportional Derivative (PD) controller is proposed for the feedback control. For the lower level, a traction control algorithm is used, together with the yaw moment requirement, for torque allocation.
Journal Article

A Heavy Tractor Semi-Trailer Stability Control Strategy Based on Electronic Pneumatic Braking System HIL Test

2019-10-15
Abstract Aiming to improve the handling performance of heavy tractor semi-trailer during turning or changing lanes at high speed, a hierarchical structure controller is proposed and a hardware-in-the-loop (HIL) test bench of the electronic pneumatic braking system is developed to validate the proposed controller. In the upper controller, a Kalman filter observer based on the heavy tractor semi-trailer dynamic model is used to estimate the yaw rates and sideslip angles of the tractor and trailer. Simultaneously, a sliding mode direct yaw moment controller is developed, which takes the estimated yaw rates and sideslip angles and the reference values calculated by the three-degrees-of-freedom dynamic model of the heavy tractor semi-trailer as the control inputs. In the lower controller, the additional yaw moments of tractor and trailer are transformed into corresponding wheel braking forces according to the current steering characteristics.
Journal Article

A Hybrid Trajectory Planning Approach for Autonomous Rule–Compliant Multi-Vehicle Oval Racing

2023-09-07
Abstract Motion planning for autonomous vehicles remains challenging, especially in environments with multiple vehicles and high speeds. Autonomous racing offers an opportunity to develop algorithms that can deal with such situations and adds the requirement of following race rules. We propose a hybrid local planning approach capable of generating rule-compliant trajectories at the dynamic limits for multi-vehicle oval racing. The planning method is based on a spatiotemporal graph, which is searched in a two-step process to exploit the dynamic limits on the one hand and achieve a long planning horizon on the other. We introduce a soft-checking procedure that can handle cases where no collision-free, feasible, or rule-compliant solutions are found to restore an admissible state as quickly as possible. We also present a state machine explicitly designed for fully autonomous operation on a racetrack, acting on a higher level of the planning algorithm.
Journal Article

A K-Seat-Based PID Controller for Active Seat Suspension to Enhance Motion Comfort

2022-02-16
Abstract Autonomous vehicles (AVs) are expected to have a great impact on mobility by decreasing commute time and vehicle fuel consumption and increasing safety significantly. However, there are still issues that can jeopardize their wide impact and their acceptance by the public. One of the main limitations is motion sickness (MS). Hence, the last year’s research is focusing on improving motion comfort within AVs. On one hand, users are expected to perceive AVs driving style as more aggressive, as it might result in excessive head and body motion. Therefore, speed reduction should be considered as a countermeasure of MS mitigation. On the other hand, the excessive reduction of speed can have a negative impact on traffic. At the same time, the user’s dissatisfaction, i.e., acceptance and subjective comfort, will increase due to a longer journey time.
Journal Article

A Mid-fidelity Model in the Loop Feasibility Study for Implementation of Regenerative Antilock Braking System in Electric Vehicles

2023-07-29
Abstract The tailpipe zero-emission legislation has pushed the automotive industry toward more electrification. Regenerative braking is the capability of electric machines to provide brake torque. So far, the regenerative braking feature is primarily considered due to its effect on energy efficiency. However, using individual e-machines for each wheel makes it possible to apply the antilock braking function due to the fast torque-tracking characteristics of permanent magnet synchronous motors (PMSM). Due to its considerable cost reduction, in this article, a feasibility study is carried out to investigate if the ABS function can be done purely through regenerative braking using a mid-fidelity model-based approach. An uni-tire model of the vehicle with a surface-mount PMSM (SPMSM) model is used to verify the idea. The proposed ABS control system has a hierarchical structure containing a high-level longitudinal slip controller and a low-level SPMSM torque controller.
Journal Article

A New Approach of Antiskid Braking System (ABS) via Disk Pad Position Control (PPC) Method

2020-10-15
Abstract A classical antiskid brake system (ABS) is typically used to control the brake fluid pressure by creating repeated cycles of decreasing and increasing brake force to avoid wheel locking, causing the fluctuation of the brake hydraulic pressure and resulting in vibration during wheel rotation. This article proposes a new approach of skid control for ABS by controlling the disk pad position. This new approach involves using a modest control method to determine the optimal skid that allows the wheel to exert maximum friction force for decelerating the vehicle by shifting the brake pad position instead of modulating the brake fluid pressure. This pad position control (PPC) method works in a continuous manner. Therefore, no rapid changes are required in the brake pressure and wheel rotation speed. To identify the PPC braking performance, braking test simulations and experiments have been carried out.
Journal Article

A Novel Approach for the Frequency Shift of a Single Component Eigenmode through Mass Addition in the Context of Brake Squeal Reduction

2022-09-23
Abstract Brake squeal reduces comfort for the vehicle occupants, damages the reputation of the respective manufacturer, and can lead to financial losses due to cost-intensive repair measures. Mode coupling is mainly held responsible for brake squeal today. Two adjacent eigenfrequencies converge and coalesce due to a changing bifurcation parameter. Several approaches have been developed to suppress brake squeal through structural changes. The main objective is to increase the distance of coupling eigenfrequencies. This work proposes a novel approach to structural modifications and sizing optimization aiming for a start at shifting a single component eigenfrequency. Locations suitable for structural changes are derived such that surrounding modes do not significantly change under the modifications. The positions of modifications are determined through a novel sensitivity calculation of the eigenmode to be shifted in frequency.
Journal Article

A Novel Coordinated Algorithm for Vehicle Stability Based on Optimal Guaranteed Cost Control Theory

2020-10-06
Abstract Nowadays, with the great advancement of automobile intellectualization, vehicle integrated dynamic control is increasingly becoming a hot research field. For vehicle stability, this article focuses on the coordinated control of Direct Yaw-moment Control (DYC) and Active Front Steering (AFS). First of all, the nominal control variables (yaw rate and sideslip angle) are designed based on the linear two Degrees of Freedom (2 DOF) vehicle model, in which the phase difference between the actual and nominal variables has been pointed out due to the approximate substitution with first-order time-delay transfer function. Secondly, considering the uncertainty of cornering stiffness per axle, and increasing robustness of the system, the Optimal Guaranteed Cost Control (OGCC) theory is adopted to design the coordinated controller.
Journal Article

A Novel Model Predictive Control Framework for Energy Management in Retrofit Hybrid Electric Vehicles

2023-01-18
Abstract Hybrid Electric Vehicles (HEV) are increasingly gaining focus and usage for their ability to effectively reduce fuel consumption and emissions. In retrofit HEVs, additional electrical power components are retrofitted to the existing fuel-powered engine-based conventional vehicles which provide an easier and more economical means to transform them into HEVs. In this work, a novel control strategy is developed for the energy management of a retrofit mild parallel HEV where there is neither any control over the engine system nor direct sensing of engine variables. The energy management–based control strategies of a Model Predictive Control (MPC) and Equivalent Consumption Minimization Strategy (ECMS) are analyzed in the context of a retrofit HEV, and the ECMS cost function is integrated into the MPC framework, which is successfully implemented in a Model-In-the-Loop (MIL) platform by execution under suitable driving cycles.
Journal Article

A Practical Fail-Operational Steering Concept

2020-10-02
Abstract Automated vehicles require some level of subsystem redundancy, whether to allow a transition time for driver re-engagement (L3) or continued operation in a faulted state (L4+). Highly automated vehicle developers need to have safe miles accumulated by vehicles to assess system maturity and experience new environments. This article presents a conceptual framework suggesting that hardware newly available to commercial vehicle application can be used to form a steering system that will remain operational upon a failure. The key points of a provisional safety case are presented, giving hope that a complete safety case is possible. This article will provide autonomous vehicle developers a view of a near term possibility for a highly automated commercial vehicle steering solution.
Journal Article

A Predictive Tool to Evaluate Braking System Performance Using Thermo-Structural Finite Element Model

2019-10-14
Abstract The braking phenomenon is an aspect of vehicle stopping performance where with kinetic energy due to the speed of the vehicle is transformed into thermal energy produced by the brake disc and its pads. The heat must then be dissipated into the surrounding structure and into the airflow around the brake system. The thermal friction field during the braking phase between the disc and the brake pads can lead to excessive temperatures. In our work, we presented numerical modeling using ANSYS software adapted in the finite element method (FEM), to follow the evolution of the global temperatures for the two types of brake discs, full and ventilated disc during braking scenario. Also, numerical simulation of the transient thermal analysis and the static structural analysis were performed here sequentially, with coupled thermo-structural method.
Journal Article

A Probabilistic Approach to Hydroplaning Potential and Risk

2019-01-30
Abstract A major contributor to fatal vehicle crashes is hydroplaning, which has traditionally been reported at a specific vehicle speed for a given operating condition. However, hydroplaning is a complex phenomenon requiring a holistic, probabilistic, and multidisciplinary approach. The objective of this article is to develop a probabilistic approach to predict Hydroplaning Potential and Risk that integrates fundamental understanding of the interdependent factors: hydrology, fluid-solid interactions, tire mechanics, and vehicle dynamics. A novel theoretical treatment of Hydroplaning Potential and Risk is developed, and simulation results for the prediction of water film thickness and Hydroplaning Potential are presented. The results show the advantages of the current approach which could enable the improvement of road, vehicle, and tire design, resulting in greater safety of the traveling public.
Journal Article

A Real-Time-Capable Simulation Model for Off-Highway Applications Considering Soft Soil

2021-09-02
Abstract This article describes the real-time simulation of a tire model for the off-highway sector. The off-highway area is characterized by soft surfaces. The additional deformation of the ground can result in more complex interactions between the tires and ground than in the on-highway area. The basics for these relationships are explained using normal and shear stress models. Aspects such as elastic tires, sinking due to slip, and multipass are also described. It is explained how soft soil modeling is used by a height field model to calculate the deformations of the soil and the resulting tire forces. Particular emphasis is placed on the calculation time and the numerical stability. The implementation in an existing real-time-capable vehicle model is described, which is important to provide a comprehensive simulation solution. During the validation it could be shown that the implemented height field can correctly map the soft soil properties.
X