Refine Your Search

Search Results

Viewing 1 to 9 of 9
Technical Paper

A Method for Measuring the Field of View in Vehicle Mirrors

2003-03-03
2003-01-0297
A new method is presented for physically measuring drivers' field of view in rearview mirrors. A portable coordinate measurement apparatus (FARO Arm) is used to measure the mirror locations, contours, and curvature. Measurements of the driver's head and eye locations while looking into each mirror are also made. Raytracing is used to map the two- or three-dimensional field of view in each mirror. The method differentiates between monocular, binocular, and ambinocular fields of view, and can account for head movements. This method has been applied to passenger cars, light trucks, and heavy trucks to document how drivers aim their mirrors during normal use.
Technical Paper

Characterizing Vehicle Occupant Body Dimensions and Postures Using a Statistical Body Shape Model

2017-03-28
2017-01-0497
Reliable, accurate data on vehicle occupant characteristics could be used to personalize the occupant experience, potentially improving both satisfaction and safety. Recent improvements in 3D camera technology and increased use of cameras in vehicles offer the capability to effectively capture data on vehicle occupant characteristics, including size, shape, posture, and position. In previous work, the body dimensions of standing individuals were reliably estimated by fitting a statistical body shape model (SBSM) to data from a consumer-grade depth camera (Microsoft Kinect). In the current study, the methodology was extended to consider seated vehicle occupants. The SBSM used in this work was developed using laser scan data gathered from 147 children with stature ranging from 100 to 160 cm and BMI from 12 to 27 kg/m2 in various sitting postures.
Technical Paper

Comparison of Airbag-Aggressivity Predictors in Relation to Forearm Fractures

1998-02-23
980856
Four unembalmed human cadavers were used in eight direct-forearm-airbag-interaction static deployments to assess the relative aggressivity of two different airbag modules. Instrumentation of the forearm bones included triaxial accelerometry, crack detection gages, and film targets. The forearm-fracture predictors, peak and average distal forearm speed (PDFS and ADFS), were evaluated and compared to the incidence of transverse, oblique, and wedge fractures of the radius and ulna. Internal-airbag pressure and axial column loads were also measured. The results of this study support the use of PDFS or ADFS for the prediction of airbag-induced upper-extremity fractures. The results also suggest that there is no direct relationship between internal-airbag pressure and forearm fracture. The less-aggressive system (LAS) examined in this study produced half the number of forearm fracture as the more-aggressive system (MAS), yet exhibited a more aggressive internal-pressure performance.
Journal Article

Development of a Methodology for Simulating Seat Back Interaction Using Realistic Body Contours

2013-04-08
2013-01-0452
Seat comfort is driven in part by the fit between the sitter and seat. Traditional anthropometric data provide little information about the size and shape of the torso that can be used for backrest design. This study introduces a methodology for using three-dimensional computer models of the human torso based on a statistical analysis of body shapes for conducting automated fit assessments. Surface scan data from 296 men and 417 women in a seated posture were analyzed to create a body shape model that can be adjusted to a range of statures, body shape, and postures spanning those typical of vehicle occupants. Finite-element models of two auto seat surface were created, along with custom software that generates body models and postures them in the seat. A simple simulation technique was developed to rapidly assess the fit of the torso relative to the seat back.
Technical Paper

Development of an Improved Driver Eye Position Model

1998-02-23
980012
SAE Recommended Practice J941 describes the eyellipse, a statistical representation of driver eye locations, that is used to facilitate design decisions regarding vehicle interiors, including the display locations, mirror placement, and headspace requirements. Eye-position data collected recently at University of Michigan Transportation Research Institute (UMTRI) suggest that the SAE J941 practice could be improved. SAE J941 currently uses the SgRP location, seat-track travel (L23), and design seatback angle (L40) as inputs to the eyellipse model. However, UMTRI data show that the characteristics of empirical eyellipses can be predicted more accurately using seat height, steering-wheel position, and seat-track rise. A series of UMTRI studies collected eye-location data from groups of 50 to 120 drivers with statures spanning over 97 percent of the U.S. population. Data were collected in thirty-three vehicles that represent a wide range of vehicle geometry.
Technical Paper

Geometric Visibility of Mirror Mounted Turn Signals

2005-04-11
2005-01-0449
Turn signals mounted on exterior rearview mirrors are increasingly being used as original equipment on passenger cars and light trucks. The potential for mirror-mounted turn signals (MMTS) to improve the geometric visibility of turn signals is examined in this paper. A survey of U.S. and UN-ECE regulations showed that the turn signals of a vehicle that is minimally compliant with U.S. regulations are not visible to a driver of a nearby vehicle in an adjacent lane. Measurements of mirror location and window geometry were made on 74 passenger cars and light trucks, including 38 vehicles with fender-mounted turn signals (FMTS). These data were combined with data on driver eye locations from two previous studies to assess the relative visibility of MMTS and conventional signals. Simulations were conducted to examine the potential for signals to be obstructed when a driver looks laterally through the passenger-side window.
Technical Paper

Investigating Driver Headroom Perception: Methods and Models

1999-03-01
1999-01-0893
Recent changes in impact protection requirements have led to increased padding on vehicle interior surfaces. In the areas near the driver's head, thicker padding can reduce the available headspace and may degrade the driver's perception of headroom. A laboratory study of driver headroom perception was conducted to investigate the effects of physical headroom on the subjective evaluation of headroom. Ninety-nine men and women rated a range of headroom conditions in a reconfigurable vehicle mockup. Unexpectedly, driver stature was not closely related to the perception of headroom. Short-statured drivers were as likely as tall drivers to rate a low roof condition as unacceptable. Statistical models were developed from the data to predict the effects of changes in headroom on the percentage of drivers rating the head-room at a specified criterion level.
Journal Article

Postural Behaviors during One-Hand Force Exertions

2008-06-17
2008-01-1915
Posture and external loads such as hand forces have a dominant effect on ergonomic analysis outcomes. Yet, current digital human modeling tools used for proactive ergonomics analysis lack validated models for predicting postures for standing hand-force exertions. To address this need, the effects of hand magnitude and direction on whole-body posture for standing static hand-force exertion tasks were quantified in a motion-capture study of 19 men and women with widely varying body size. The objective of this work was to identify postural behaviors that might be incorporated into a posture-prediction algorithm for standing hand-force tasks. Analysis of one-handed exertions indicates that, when possible, people tend to align their bodies with the direction of force application, converting potential cross-body exertions into sagittal plane exertions. With respect to the hand-force plane, pelvis position is consistent with a postural objective of reducing rotational trunk torques.
Technical Paper

Simulating Complex Automotive Assembly Tasks using the HUMOSIM Framework

2009-06-09
2009-01-2279
Efficient methods for simulating operators performing part handling tasks in manufacturing plants are needed. The simulation of part handling motions is an important step towards the implementation of virtual manufacturing for the purpose of improving worker productivity and reducing injuries in the workplace. However, industrial assembly tasks are often complex and involve multiple interactions between workers and their environment. The purpose of this paper is to present a series of industrial simulations using the Human Motion Simulation Framework developed at the University of Michigan. Three automotive assembly operations spanning scenarios, such as small and large parts, tool use, walking, re-grasping, reaching inside a vehicle, etc. were selected.
X