Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

180 Cu Yd Stripping Shovel

1967-02-01
670745
Because of the size and weight of the various components going into the machine, new approaches were used to solve the practical limitations of manufacturing facilities, shipping clearances, and erection procedures. Although the general appearance of the machine is similar to previous units, there are a number of new design features incorporated in the unit. This paper will be limited to the major design considerations as follows: adaption to stripping two seams of coal simultaneously; dipper with two doors; computerized hydraulic steering maintaining Ackerman correction; double end drive crawlers and belt tensioning; and electrical innovations.
Technical Paper

1D Modeling of HVAC Unit Air Flow for Automatic Climate Control Simulations

2021-04-06
2021-01-0215
Advanced control techniques are widely used in different automotive applications including climate control. Significant costs associated with the development and calibration of such controllers can be reduced if these tasks are conducted in a virtual environment. Such a virtual environment can be developed by integrating the controller with the system model. Different scenarios can be then simulated to make sure functional objectives of the system are met. 1D models provide the necessary level of accuracy without imposing extra computational cost in such virtual environments. As such, they are perfect candidates for model, hardware or software-in-the loop validation benches for controls. Performance of a heating, ventilation and air-conditioning (HVAC) system can be controlled through the settings of the components like mode door, blend door, recirculation door, blower, and the compressor.
Technical Paper

2006 Corvette Z06 Carbon Fiber Fender- Engineering, Design, and Material Selection Considerations

2005-04-11
2005-01-0468
General Motor's Corvette product engineering was given the challenge to find mass reduction opportunities on the painted body panels of the C6 Z06 through the utilization of carbon fiber reinforced composites (CFRC). The successful implementation of a carbon fiber hood on the 2004 C5 Commemorative Edition Z06 Corvette was the springboard for Corvette Team's appetite for a more extensive application of CFRC on the C6 Z06 model. Fenders were identified as the best application for the technology given their location on the front of the vehicle and the amount of mass saved. The C6 Z06 CFRC fenders provide 6kg reduction of vehicle mass as compared to the smaller RRIM fenders used on the Coupe and Convertible models.
Technical Paper

3D Audio Reproduction via Headrest Equipped with Loudspeakers—Investigations on Acoustical Design Criteria

2020-09-30
2020-01-1567
This paper focuses on the analysis and evaluation of acoustical design criteria to produce a plausible 3D sound field solely via headrest with integrated loudspeakers at the driver/passenger seats in the car cabin. Existing audio systems in cars utilize several distributed loudspeakers to support passengers with sound. Such configurations suffer from individual 3D audio information at each position. Therefore, we present a convincing minimal setup focusing sound solely at the passenger’s ears. The design itself plays a critical role for the optimal reproduction and control of a sound field for a specific 3D audio application. Moreover, the design facilitates the 3D audio reproduction of common channel-based, scene-based, and object-based audio formats. In addition, 3D audio reproduction enables to represent warnings regarding monitoring of the vehicle status (e.g.: seat belts, direction indicator, open doors, luggage compartment) in spatial accordance.
Technical Paper

42V PowerNet in Door Applications

2000-03-06
2000-01-0450
This article describes the effects of a future 42V automotive electrical system on the vehicle electronics, focusing mainly on the consequences for power semiconductors and their associated technologies. Taking the example of a door module, it then shows how existing 14V loads can be operated on the 42V PowerNet and what advantages result for operation of adjusted 42V loads. The following different problem-solving approaches are presented for typical loads such as power windows, electrically positioned and heated outside mirrors, and central locking: Power windows: A test motor specially developed for the 42V supply is continuously operated directly from the electrical system using suitable power semiconductors. Central locking: A conventional 14V motor is operated at 42V, its operating point being set using pulse width modulation (PWM). Remaining door module: Smaller 14V mirror motors and the control electronics are supplied from a second 14V system.
Technical Paper

700 H.P. TRUCK TRANSPORT

1967-02-01
670700
SIGNIFICANT REDUCTION IN THE TRANSPORTATION COST PER TON MILE OF BULK PRODUCTS IS ATTAINABLE BY THE PROPER ADAPTATION OF A TRUCK TRAIN TRANSPORT. IMPROVED HAUL ROADS, GREATER DISTANCES, AND INCREASED DEMAND FOR MINE PRODUCTS AT COMPETITIVE PRICES ARE RESULTING IN A RE-EVALUATION OF ALL COST ASPECTS OF MATERIAL MOVEMENT. THE TRUCK TRAIN CONCEPT USING RELATIVELY SMALLER TIRES THAN LARGE PIT TRUCKS OPENS THE DOOR TO REDUCED OPERATING COSTS BY LOWERING CYCLE TIMES AND COST PER MILE OF TIRES AND CAPITAL INVESTMENT.
Technical Paper

A Body Switching System using the SAE J1850 (CarLink) Protocol

1989-02-01
890542
The recent approval by the SAE Motor Vehicle Council of the serial protocol J1850 is a major milestone in the development of an open and flexible network approach to vehicle wiring. However, it is now necessary to evaluate the practical implementation of the protocol in some real vehicle applications. This paper describes one such exercise which considers a three station installation including the doors and a central body computer function, together with a diagnostic capability. It is, of course, anticipated that this simple system will be extended to include other areas of the vehicle as confidence is gained in its performance and the benefits of system integration are realised.
Technical Paper

A Bus for Denver’s Mall

1981-11-01
811280
A unique shuttle bus is being constructed by Minicars, Inc., and Walter Vetter Karosserie-werk for Denver’s Transitway/Mall. The bus is designed for frequent stop, low speed service in a downtown pedestrian environment. It features a very low floor and multiple wide doors for rapid passenger boarding and deboarding. Two versions will be supplied for comparative evalation, a low noise diesel configuration and a battery-electric configuration. Either version can subsequently be converted to the alternative propulsion system.
Technical Paper

A CAE Study on Side Doors Inner Panel Deflection under Glass Stall Up Forces

2017-11-07
2017-36-0205
Not only well-functioning, but also the way operating everyday items "feel", gauges costumer perception of an automobile robustness. To prevent costumer dissatisfaction with door trim panel movement when operating power windows, deflections must be kept small. Deflections of inner panel are seen through trim panel and are responsible for giving a flimsy idea of the door. In this paper, inner panel movement for a fully stamped door in full glass stall up position is analyzed. Through CAE analyses, inner panel behavior was compared, considering different types of reinforcement for belt region.
Technical Paper

A Case Study About Side Door Closing Sound Quality

2008-03-30
2008-36-0590
Side Door Closing Sound Quality is one of the first impressions a potential customer has about a vehicle. It can enhance an impression of robust and high quality vehicle. This paper is a study of Side Door Closing Sound of a specific vehicle model. The main objective is to understand how Door Closing Sound Quality varies over several vehicles samples and how to improve the design and/or production process in order to achieve better Sound Quality. Two vehicles (same model) with distinct performance have been chosen among several samples. Both have been evaluated and the physical differences are weighted to realize what really matter for Door Closing Sound Quality.
Technical Paper

A Case Study for Automotive Door Closing Effort Uncertainty Analysis based on Monte Carlo Simulation Method

2013-10-07
2013-36-0118
Quality in the automotive industry means development and manufacturing of vehicles whose specifications meet customer requirements. Among many other quality issues, door closing effort is a vehicle characteristic that strongly affects the customer first opinion about vehicle design. The door closing effort is affected by uncertainties in materials and manufacturing processes. The present paper presents a reliability-based method to evaluate the uncertainties associated with door closing effort due to manufacturing processes. A formulation is proposed to calculate that energy based on three components: energy used to compress air into the vehicle, energy used to compress the sealing and energy used to lock the door. In order to quantify the probability that the door closing effort is greater than a target value, reliability analysis concepts are used based on the uncertainties associated to latch position.
Technical Paper

A Case Study: Application of Analytical and Numerical Techniques to Squeak and Rattle Analysis of a Door Assembly

2015-06-15
2015-01-2257
Squeak and rattle (S&R) problems in body structure and trim parts have become serious issues for automakers because of their influence on the initial quality perception of consumers. In this study, various CAE and experimental methods developed by Hyundai Motors for squeak and rattle analysis of door systems are reported. Friction-induced vibration and noise generation mechanisms of a door system are studied by an intelligent combination of experimental and numerical methods. It is shown that the effect of degradation of plastics used in door trims can be estimated by a numerical model using the properties obtained experimentally. Effects of changes in material properties such as Young's modulus and loss factor due to the material degradation as well as statistical variations are predicted for several door system configurations. As a new concept, the rattle and squeak index is proposed, which can be used to guide the design.
Journal Article

A Component Test Methodology for Simulation of Full-Vehicle Side Impact Dummy Abdomen Responses for Door Trim Evaluation

2011-04-12
2011-01-1097
Described in this paper is a component test methodology to evaluate the door trim armrest performance in an Insurance Institute for Highway Safety (IIHS) side impact test and to predict the SID-IIs abdomen injury metrics (rib deflection, deflection rate and V*C). The test methodology consisted of a sub-assembly of two SID-IIs abdomen ribs with spine box, mounted on a linear bearing and allowed to translate in the direction of impact. The spine box with the assembly of two abdominal ribs was rigidly attached to the sliding test fixture, and is stationary at the start of the test. The door trim armrest was mounted on the impactor, which was prescribed the door velocity profile obtained from full-vehicle test. The location and orientation of the armrest relative to the dummy abdomen ribs was maintained the same as in the full-vehicle test.
Technical Paper

A Comprehensive Study of Door Slam

2004-03-08
2004-01-0161
As part of an ongoing technical collaboration between Ford and Rouge Steel Company, a comprehensive study of door slam event was undertaken. The experimental phase of the project involved measurements of accelerations at eight locations on the outer panel and strains on six locations of the inner panel. Although slam tests were conducted with window up and window down, results of only one test is presented in this paper. The CAE phase of the project involved the development of suitable “math” model of the door assembly and analysis methodology to capture the dynamics of the event. The predictability of the CAE method is examined through detailed comparison of accelerations and strains. While excellent agreement between CAE and test results of accelerations on the outer panel is obtained, the analysis predicts higher strains on the inner panel than the test. In addition, the tendency of outer panel to elastically buckle is examined.
Journal Article

A Computational Process for Early Stage Assessment of Automotive Buffeting and Wind Noise

2013-05-13
2013-01-1929
A computational process for early stage vehicle shape assessment for automotive front window buffeting and greenhouse wind noise is presented. It is a challenging problem in an experimental process as the vehicle geometry is not always finalized. For example, the buffeting behavior typically worsens during the vehicle development process as the vehicle gets tighter, leading to expensive late counter measures. We present a solution using previously validated CFD/CAA software based on the Lattice Boltzmann Method (LBM). A CAD model with realistic automotive geometry was chosen to simultaneously study the potential of different side mirror geometries to influence the front window buffeting and greenhouse wind noise phenomena. A glass mounted mirror and a door mounted mirror were used for this comparative study. Interior noise is investigated for the two phenomena studied. The unsteady flow is visualized and changes in the buffeting and wind noise behavior are explored.
Technical Paper

A Consideration Of Wind Noise Reduction By Air Flow Control

1988-09-01
885115
The relation between the wind noise level at high speed cruising and the vehicle body shape was studied. The wind noise level in the vehicle depends on the external aerodynamic noise and the noise isolation characteristic of the weatherstrip, body panel and so on. In order to reduce the wind noise level; the modification of the body shape is an important Batter. Based on model experiments, it is shown that the aerodynamic noise is generated mainly on the front door windshield glass and its level is effected by the air flow around front pillar. As the aerodynamic noise is induced by the velocity or pressure fluctuation of air flow, the relationships among the front body shape, the air flow fluctuation and the aerodynamic noise are described analytically. The results were applied to the improvement of design of the production vehicles.
Technical Paper

A Consideration of Vehicle's Door Shutting Performance

1981-02-01
810101
Many papers have mentioned, in passing, a phenomena that is known as “airtightness”, which is one factor that hinders automobile doors from closing. It also causes the eardrums of any passengers in the vehicle to be temporarily pressurized when the door is closed. However, few documents have considered this phenomena in detail. In this paper, we investigate the magnitude of “airtightness” as it affects ear pressure and examine its relationship to such factors as the volume of the passenger compartment, door's opening area and its inertial moment. Finally, we utilized estimation methods to predict its influence on the force required to close the door and the amount of the resultant air draft.
Technical Paper

A Design Study to Determine the Impact of Various Parameters on Door Acoustics

2003-05-05
2003-01-1430
Once the design of a door sheetmetal and accessories is confirmed, the acoustics of the door system depends on the sound package assembly. This essentially consists of a watershield which acts as a barrier and a porous material which acts as an absorber. The acoustical performance of the watershield and the reverberant sound build-up in the door cavity control the performance. This paper discusses the findings of a design study that was developed based on design of experiments (DOE) concepts to determine which parameters of the door sound package assembly are important to the door acoustics. The study was based on conducting a minimum number of tests on a five factor - two level design that covered over 16 different design configurations. In addition, other measurements were made that aided in developing a SEA model which is also compared with the findings of the results of the design study.
Technical Paper

A Development and Evaluation of Optimal Fingerprint Authentication Algorithm in Vehicle Use Environment

2020-04-14
2020-01-0723
Hyundai Motor Company mass-produced the world's first fingerprint entry and start system. This paper is a study on the evaluation method to develop and verify the optimal fingerprint authentication algorithm for vehicle usage conditions. Currently, fingerprint sensors and algorithms in the IT industry have been developed for the electronic devices, and are not suitable for the harsh environment of the vehicle and the vehicle life cycle for more than 10 years. In order to optimize the fingerprint sensor and algorithm for the vehicle, this study consisted of 3way test methods. As a result, the fingerprint system could be optimized for the vehicle and the recognition rate and security could be optimized according to the sensor authentication level. Through this study, the door handle recognition rate was improved by 25% and the start button recognition rate by 10%, and the fingerprint entry and start system was mass-produced with security level that satisfies the immobilizer regulations.
Technical Paper

A Development of the New Mechanism for Preventing Door Opening in Side Impact Test

2017-03-28
2017-01-1459
During a new vehicle development process, there are several requirements for side impact test that should be confirmed. One of the requirements is the prevention of door opening during side impact test. Even though there are many causes for door opening problem, this study deals with inertia effect by impact energy. Until now, there have been two classical methods to prevent car door from opening in side impact. One is the increment of the inertia resistance by increasing the mass of the balance weight and the spring force. The other is the application of the blocking lever. Unfortunately, in spite of our efforts, the door opening problem occurs occasionally. Therefore, to improve the problem fundamentally, this paper proposes a new blocking lever mechanism that work similar to ball-point pen structure. The proposed mechanism fixes the blocking lever when the opening directional inertia force is applied to the door outside handle during side crash.
X