Refine Your Search

Search Results

Viewing 1 to 16 of 16
Technical Paper

Assessment of the Approximation Formula for the Calculation of Methane/Air Laminar Burning Velocities Used in Engine Combustion Models

2017-09-04
2017-24-0007
Especially for internal combustion engine simulations, various combustion models rely on the laminar burning velocity. With respect to computational time needed for CFD, the calculation of laminar burning velocities using a detailed chemical mechanism can be replaced by incorporation of approximation formulas, based on rate-ratio asymptotics. This study revisits an existing analytical approximation formula [1]. It investigates applicable temperature, pressure, and equivalence ratio ranges with special focus on engine combustion conditions. The fuel chosen here is methane and mixtures are composed of methane and air. The model performance to calculate the laminar burning velocity are compared with calculated laminar burning velocities using existing state of the art detailed chemical mechanisms, the GRI Mech 3.0 [2], the ITV RWTH [3], and the Aramco mechanism [4].
Journal Article

Characterization of Hollow Cone Gas Jets in the Context of Direct Gas Injection in Internal Combustion Engines

2018-04-03
2018-01-0296
Direct injection (DI) compressed natural gas (CNG) engines are emerging as a promising technology for highly efficient and low-emission engines. However, the design of DI systems for compressible gas is challenging due to supersonic flows and the occurrence of shocks. An outwardly opening poppet-type valve design is widely used for DI-CNG. The formation of a hollow cone gas jet resulting from this configuration, its subsequent collapse, and mixing is challenging to characterize using experimental methods. Therefore, numerical simulations can be helpful to understand the process and later to develop models for engine simulations. In this article, the results of high-fidelity large-eddy simulation (LES) of a stand-alone injector are discussed to understand the evolution of the hollow cone gas jet better.
Technical Paper

Computational Chemistry Consortium: Surrogate Fuel Mechanism Development, Pollutants Sub-Mechanisms and Components Library

2019-09-09
2019-24-0020
The Computational Chemistry Consortium (C3) is dedicated to leading the advancement of combustion and emissions modeling. The C3 cluster combines the expertise of different groups involved in combustion research aiming to refine existing chemistry models and to develop more efficient tools for the generation of surrogate and multi-fuel mechanisms, and suitable mechanisms for CFD applications. In addition to the development of more accurate kinetic models for different components of interest in real fuel surrogates and for pollutants formation (NOx, PAH, soot), the core activity of C3 is to develop a tool capable of merging high-fidelity kinetics from different partners, resulting in a high-fidelity model for a specific application. A core mechanism forms the basis of a gasoline surrogate model containing larger components including n-heptane, iso-octane, n-dodecane, toluene and other larger hydrocarbons.
Technical Paper

Development of Phenomenological Models for Engine-Out Hydrocarbon Emissions from an SI DI Engine within a 0D Two-Zone Combustion Chamber Description

2021-09-05
2021-24-0008
The increasingly stringent limits on pollutant emissions from internal combustion engine-powered vehicles require the optimization of advanced combustion systems by means of virtual development and simulation tools. Among the gaseous emissions from spark-ignition engines, the unburned hydrocarbon (HC) emissions are the most challenging species to simulate because of the complexity of the multiple physical and chemical mechanisms that contribute to their emission. These mechanisms are mainly three-dimensional (3D) resulting from multi-phase physics - e.g., fuel injection, oil-film layer, etc. - and are difficult to predict even in complex 3D computational fluid-dynamic (CFD) simulations. Phenomenological models describing the relationships between the physical-chemical phenomena are of great interest for the modeling and simplification of such complex mechanisms.
Technical Paper

Development of a Fast-Running Injector Model with Artificial Neural Network (ANN) for the Prediction of Injection Rate with Multiple Injections

2021-09-05
2021-24-0027
The most challenging part of the engine combustion development is the reduction of pollutants (e.g. CO, THC, NOx, soot, etc.) and CO2 emissions. In order to achieve this goal, new combustion techniques are required, which enable a clean and efficient combustion. For compression ignition engines, combustion rate shaping, which manipulates the injected fuel mass to control the in-cylinder pressure trace and the combustion rate itself, turned out to be a promising opportunity. One possibility to enable this technology is the usage of specially developed rate shaping injectors, which can control the injection rate continuously. A feasible solution with series injectors is the usage of multiple injections to control the injection rate and, therefore, the combustion rate. For the control of the combustion profile, a detailed injector model is required for predicting the amount of injected fuel. Simplified 0D models can easily predict single injection rates with low deviation.
Journal Article

Effects of Cavitation and Hydraulic Flip in 3-Hole GDI Injectors

2017-03-28
2017-01-0848
The performance of Gasoline Direct Injection (GDI) engines is governed by multiple physical processes such as the internal nozzle flow and the mixing of the liquid stream with the gaseous ambient environment. A detailed knowledge of these processes even for complex injectors is very important for improving the design and performance of combustion engines all the way to pollutant formation and emissions. However, many processes are still not completely understood, which is partly caused by their restricted experimental accessibility. Thus, high-fidelity simulations can be helpful to obtain further understanding of GDI injectors. In this work, advanced simulation and experimental methods are combined in order to study the spray characteristics of two different 3-hole GDI injectors.
Technical Paper

Experimental and Numerical Investigation of the Maximum Pressure Rise Rate for an LTC Concept in a Single Cylinder CI Engine

2019-09-09
2019-24-0023
In the foreseeable future, the transportation sector will continue to rely on internal combustion engines. Therefore, reduction of engine-out emissions and increase in engine efficiency are important goals to meet future legislative regulations and restricted fuel resources. One viable option, which provides lower peak temperatures and increased mixture homogeneity and thus simultaneously reduces nitric oxide as well as soot, is a low-temperature combustion (LTC) concept. However, this might result in an increase of unburnt hydrocarbon, carbon monoxide, and combustion noise due to early combustion phasing and lower engine efficiency. Various studies show that these drawbacks can be compensated by advanced injection strategies, e.g. by employing multiple injections. The aim of this work is to identify the optimum injection strategy, which enables a wide range of engine operating points in LTC mode with reduced engine-out emissions.
Technical Paper

Influence of the Injector Geometry on Primary Breakup in Diesel Injector Systems

2014-04-01
2014-01-1427
Diesel injection systems have a significant impact on the performance as well as emission and pollutant formation of modern diesel engines. Even though the geometry of atomizers became more and more complex over the last years, injection systems still have a large potential for improving the overall diesel engine combustion process. Due to the complexity of the atomization process, reliable models are not available, yet these are highly desired for supporting the design process. They have to be developed using detailed numerical simulations. In this work, the “Spray A” reference case defined by the Engine Combustion Network is simulated under realistic operation conditions using a recently developed numerical framework for multiphase flows. A Large-Eddy Simulation of the nozzle internal flow is coupled with a Direct Numerical Simulation of the interfacial outside flow and the resulting primary breakup is analyzed.
Technical Paper

LES Modeling Study on Cycle-to-Cycle Variations in a DISI Engine

2020-04-14
2020-01-0242
The reduction of cycle-to-cycle variations (CCV) is a prerequisite for the development and control of spark-ignition engines with increased efficiency and reduced engine-out emissions. To this end, Large-Eddy Simulations (LES) can improve the understanding of stochastic in-cylinder phenomena during the engine design process, if the employed modeling approach is sufficiently accurate. In this work, an inhouse code has been used to investigate CCV in a direct-injected spark ignition (DISI) engine under fuel-lean conditions with respect to a stoichiometric baseline operating point. It is shown that the crank angle when a characteristic fuel mass fraction is burned, e.g. MFB50, correlates with the equivalence ratio computed as a local average in the vicinity of the spark plug. The lean operating point exhibits significant CCV, which are shown to be correlated also with the in-cylinder subfilter-scale (SFS) kinetic energy.
Technical Paper

Laminar Burning Velocity of Market Type Gasoline Surrogates as a Performance Indicator in Internal Combustion Engines

2018-09-10
2018-01-1667
The laminar burning velocity is an important parameter in various combustion models for engine simulations. With respect to computational time for computational fluid dynamics (CFD) and full system engine simulations, the calculation of laminar burning velocities using a detailed chemical mechanism can be replaced by incorporation of approximation formulas, based on rate-ratio asymptotics. In the present study, a work flow is developed to analyze the engine efficiency performance of spark ignition engines with respect to the laminar burning velocity as a fundamental fuel property. Firstly, methane is used as a fuel to assess practicability of the approach. The procedure is subsequently adopted for market type gasoline surrogates, RON95 and RON100. Detailed chemistry calculations are carried out for the three target fuels using existing state of the art mechanisms, the Aramco [Zhou et al., Proc. Combust. Inst., pp. 403-411, 2017] and the ITV RWTH mechanism [Cai et al., Combust.
Technical Paper

Large-Eddy Simulation Study on Unsteady Effects in a Statistically Stationary SI Engine Port Flow

2015-04-14
2015-01-0373
Although spark-ignited engines have a considerable development history, the relevant flow physics and geometry design implications are still not fully understood. One reason is the lack of experimental and numerical methods with sufficiently high resolution or capabilities of capturing stochastic phenomena which could be used as part of the development cycle. More recently, Large-Eddy simulation (LES) has been identified as a promising technique to establish a better understanding of in-cylinder flow variations. However, simulations of engine configurations are challenging due to resolution as well as modeling requirements and computational cost for these unsteady multi-physics problems. LES on full engine geometries can even be prohibitively expensive. For this reason, the size of the computational LES domain is here reduced to the region of physical interest and boundary conditions are obtained from a RANS simulation of the whole experimental flow domain.
Technical Paper

Modeling and Numerical Investigation of Auto-Ignition and Megaknock in Boosted Gasoline Engines

2017-03-28
2017-01-0519
The performance of modern boosted gasoline engines is limited at high loads by knock, stochastic Low Speed Pre-Ignition as well as megaknock. The main objective of the present work is to develop a predictive combustion model to investigate auto-ignition and megaknock events at high load conditions in gasoline engines. A quasi one-dimensional combustion simulation tool has been developed to model abnormal combustion events in gasoline engines using detailed chemical kinetics and a multi zone wall heat transfer model. The model features six boundary layers representing specific geometrical features such as liner and piston with individual wall temperatures and chemistry to accurately track the individual zone’s thermodynamic properties. The accuracy of the utilized auto-ignition and one-dimensional spark ignition combustion models was demonstrated by validating against experimental data.
Technical Paper

Modeling of Diesel Combustion and NO Emissions Based on a Modified Eddy Dissipation Concept

2004-03-08
2004-01-0107
This paper reports the development of a model of diesel combustion and NO emissions, based on a modified eddy dissipation concept (EDC), and its implementation into the KIVA-3V multidimensional simulation. The EDC model allows for more realistic representation of the thin sub-grid scale reaction zone as well as the small-scale molecular mixing processes. Realistic chemical kinetic mechanisms for n-heptane combustion and NOx formation processes are fully incorporated. A model based on the normalized fuel mass fraction is implemented to transition between ignition and combustion. The modeling approach has been validated by comparison with experimental data for a range of operating conditions. Predicted cylinder pressure and heat release rates agree well with measurements. The predictions for NO concentration show a consistent trend with experiments. Overall, the results demonstrate the improved capability of the model for predictions of the combustion process.
Journal Article

Numerical Investigation of Direct Gas Injection in an Optical Internal Combustion Engine

2018-04-03
2018-01-0171
Direct injection (DI) of compressed natural gas (CNG) is a promising technology to increase the indicated thermal efficiency of internal combustion engines (ICE) while reducing exhaust emissions and using a relatively low-cost fuel. However, design and analysis of DI-CNG engines are challenging because supersonic gas jet emerging from the DI injector results in a very complex in-cylinder flow field containing shocks and discontinuities affecting the fuel-air mixing. In this article, numerical simulations are used supported by validation to investigate the direct gas injection and its influence on the flow field and mixing in an optically accessible ICE. The simulation approach involves computation of the in-nozzle flow with highly accurate Large-Eddy Simulations, which are then used to obtain a mapped boundary condition. The boundary condition is applied in Unsteady Reynolds Averaged Navier-Stokes simulations of the engine to investigate the in-cylinder velocity and mixing fields.
Technical Paper

Polycyclic Aromatic Hydrocarbons Evolution and Interactions with Soot Particles During Fuel Surrogate Combustion: A Rate Rule-Based Kinetic Model

2021-09-05
2021-24-0086
Modeling combustion of transportation fuels remains a difficult task due to the extremely large number of species constituting commercial gasoline and diesel. However, for this purpose, multi-component surrogate fuel models with a reduced number of key species and dedicated reaction subsets can be used to reproduce the physical and chemical traits of diesel and gasoline, also allowing to perform CFD calculations. Recently, a detailed surrogate fuel kinetic model, named C3 mechanism, was developed by merging high-fidelity sub-mechanisms from different research groups, i.e. C0-C4 chemistry (NUI Galway), linear C6-C7 and iso-octane chemistry (Lawrence Livermore National Laboratory), and monocyclic aromatic hydrocarbons (MAHs) and polycyclic aromatic hydrocarbons (PAHs) (ITV-RWTH Aachen and CRECK modelling Lab-Politecnico di Milano).
Technical Paper

Towards an Integral Combustion Model for Model-Based Control of PCCI Engines

2019-09-09
2019-24-0001
Physics-based models in a closed-loop feedback control of a premixed charge compression ignition (PCCI) engine can improve the combustion efficiency and potentially reduce harmful NOx and soot emissions. A stand-alone multi-zone combustion model has been proposed in the literature using a physics-based mixing approach. The scalar dissipation rate emerged as the determining parameter in the model for mixing among different zones in the mixture fraction space. However, the calculation of the scalar dissipation rate depends on three approaches: three-dimensional computational fluid dynamics (3-D CFD) combustion simulations based on representative interactive flamelet (RIF) model, tabulation, or an empirical algebraic model of the scalar dissipation rate fitted for the given operating conditions of the engine. While the 3-D CFD approach provides accurate results, it is computationally too expensive to use the multi-zone model in closed-loop control.
X