Refine Your Search

Search Results

Viewing 1 to 8 of 8
Technical Paper

A Numerical Study of the Influence of Diesel Nozzle Geometry on the Inner Cavitating Flow

2002-03-04
2002-01-0215
In order to analyze the influence of nozzle geometry on the internal flow characteristics of a Diesel injector, a CFD analysis of the flow through various nozzle geometries has been carried out with a commercial code. This program includes a numerical model simulating the effect of cavitation. For the flow simulation, cylindrical and conical nozzles with different grades of hydro-grinding were used in order to observe the individual effects of these geometrical parameters. The model predicts accurately the onset of cavitation, but is very limited for strongly cavitating flow, so that the analysis of the solution may only be qualitatively assessed. However, the simulations confirm the tendency observed in experiments, that the nozzle geometry significantly influences the inner flow characteristics.
Technical Paper

Cavitation effects on spray characteristics in the near-nozzle field

2009-09-13
2009-24-0037
In this paper, a special technique for visualizing the first 1.5 millimetres of the spray has been applied to examine the link between cavitation phenomenon inside the nozzle and spray behaviour in the near nozzle field. For this purpose, a real Diesel axi-symmetric nozzle has been analyzed. Firstly, the nozzle has been geometrically and hydraulically characterized. Mass flow measurements at stationary conditions have allowed the detection of the pressure conditions for mass flow choking, usually related with cavitation inception in the literature. Nevertheless, with the objective to get a deeper knowledge of cavitation phenomenon, near nozzle field visualization technique has been used to detect cavitation bubbles injected in a pressurized chamber filled with Diesel fuel. Using backlight illumination, the differences in terms of density and refractive index allowed the distinction between vapour and liquid fuel phases.
Technical Paper

Comparison between Different Hole to Hole Measurement Techniques in a Diesel Injection Nozzle

2005-05-11
2005-01-2094
In order to study differences between Diesel nozzle holes, four methodologies have been tested. The techniques compared in this paper are: the internal geometry determination, hole to hole mass flow measurement, spray momentum flux and macroscopic spray visualization. The first one is capable of obtaining the internal geometry of each of the orifice of the nozzle; the second one is capable of measuring the mass flow of each nozzle hole in both, continuous and real injections. The third one gives the momentum flux of each orifice, and finally, with the macroscopic spray visualization, the spray penetration and spray cone angle of each hole, are obtained. Generally, all these techniques can be used in order to determine the hole to hole dispersion due to different angle inclination of the holes, different internal geometry of orifices, deposits, nozzle needle off-center, needle deflection, etc.
Technical Paper

Influence of Nozzle Geometry on Spray Characteristics in Non-evaporative and Evaporative Conditions

2007-09-16
2007-24-0023
An experimental study of real multi-hole diesel nozzles with different geometry in terms of conicity factor has been performed under current DI Diesel engines operating conditions. A complete characterization of the internal nozzle flow and the sprays injected under non-evaporative conditions has been performed. The results of that study are applied in order to assist the analysis of spray in evaporative conditions. In this case, results of liquid-phase fuel penetration were obtained from a wide optical access engine operating under non-reacting conditions. From these measurements, a comparison of the results with a theoretical Diesel spray model in evaporative conditions has been carried out. This comparison has allowed the determination of the dependence of stabilized liquid length on injection pressure, ambient conditions and nozzle geometry.
Journal Article

Macroscopic Behavior of Diesel Sprays in the Near-Nozzle Field

2008-04-14
2008-01-0929
The objective of the paper is the characterization of the macroscopic behavior of Diesel sprays by focusing in at the first instants of the injection process at which the spray is clearly affected by the injector needle dynamic. There are several works dealing with the characterization of Diesel sprays in stationary conditions. Most of them conclude with empirical correlations which predict spray tip penetration as a function of the most important parameters involved in the injection process, such as: injection pressure, gas ambient density, hole diameter and time elapsed from the start of injection. In all these experiments, authors find similar power law dependencies with more or less high level of confidence. Nevertheless, few works have tried to validate or to obtain new correlations for the first instants of the injection process where the spray develops in not stationary conditions because of the influence of injector needle lift.
Technical Paper

Measurements of Spray Momentum for the Study of Cavitation in Diesel Injection Nozzles

2003-03-03
2003-01-0703
In Diesel injection Systems, cavitation often appears in the injection nozzle holes. This paper analyses how cavitation affects the Diesel spray behavior. For this purpose two spray parameters, mass flux and momentum flux, have been measured at different pressure. We know that cavitation brings about the mass flux choke, but there are few studies about how the cavitation affects the momentum and the outlet velocity. The key of this study is just the measurement of the spray momentum under cavitation conditions.
Technical Paper

Prediction of Spray Penetration by Means of Spray Momentum Flux

2006-04-03
2006-01-1387
It is known that one of the main parameters that govern the spray penetration development is spray momentum flux. In this paper, a model capable to predict the development of the spray penetration using as an input the temporal variation of the spray momentum flux is presented. The model is based on the division of the momentum flux signal in momentum packets sequentially injected and the tracking of them inside and at the tip of the spray. These packets follow a theoretical equation which relates the penetration with the ambient density, momentum and time. In order to validate the method, measures of momentum flux (impingement force) and macroscopic spray visualization in high density conditions have been performed on several mono-orifice nozzles. High agreement has been obtained between spray penetration prediction from momentum flux measurements and real spray penetration from macroscopic visualization.
Technical Paper

Study of the Influence of Geometrical and Injection Parameters on Diesel Sprays Characteristics in Isothermal Conditions

2005-04-11
2005-01-0913
This paper deals with the problem of quantifying and predicting the macroscopic spray behaviour as a function of the parameters governing the injection process. The parameters studied were ambient gas density as a representative parameter external to the system, and nozzle hole diameter and injection pressure as influential system parameters. The main purpose of this research is to validate and extend the different correlations available in the literature to the actual Diesel engine conditions, i.e. high injection pressure, small nozzle holes, severe cavitating conditions, etc. The sprays from five axi-symmetrical nozzles with different diameters are characterized in two different test rigs that can reproduce the real engine in-cylinder air density and pressure. The wide parametric study that was performed has permitted to quantify the effects of the injection pressure, nozzle hole diameter and environment gas density on the spray tip penetration.
X