Refine Your Search

Topic

Search Results

Viewing 1 to 16 of 16
Technical Paper

A Way towards Remarkable Reduction of Co2-Emissions in Motorsports: The CNG-Engine

2011-06-09
2011-37-0006
Until a few years ago the discussion of reduction of CO₂ emissions was completely out of place in motorsports. Nowadays, also in this field, car manufacturers want to investigate different approaches towards a more responsible and sustainable concept. For this target an interesting and feasible solution is the use of methane as an alternative fuel. At the 2009 edition of the 24-hour endurance race of the Nürburgring the Volkswagen Motorsport GmbH, in addition to vehicles powered by gasoline engines, introduced two vehicles powered by turbocharged CNG engines. The aim was to prove that also an "environment-friendly" concept is able to provide the required efficiency, dynamic and reliability for a successful participation in motorsports. After the success in the 2009 edition the engagement has been continued in 2010; this time exclusively with CNG vehicles.
Technical Paper

Analysis of Water Injection Strategies to Exploit the Thermodynamic Effects of Water in Gasoline Engines by Means of a 3D-CFD Virtual Test Bench

2019-09-09
2019-24-0102
CO2 emission constraints taking effect from 2020 lead to further investigations of technologies to lower knock sensitivity of gasoline engines, main limiting factor to increase engine efficiency and thus reduce fuel consumption. Moreover the RDE cycle demands for higher power operation, where fuel enrichment is needed for component protection. To achieve high efficiency, the engine should be run at stoichiometric conditions in order to have better emission control and reduce fuel consumption. Among others, water injection is a promising technology to improve engine combustion efficiency, by mainly reducing knock sensitivity and to keep high conversion rates of the TWC over the whole engine map. The comprehension of multiple thermodynamic effects of water injection through 3D-CFD simulations and their exploitation to enhance the engine combustion efficiency is the main purpose of the analysis.
Technical Paper

Design of an Additive Manufactured Natural Gas Engine with Thermally Conditioned Active Prechamber

2022-06-14
2022-37-0001
In order to decarbonize and lower the overall emissions of the transport sector, immediate and cost-effective powertrain solutions are needed. Natural gas offers the advantage of a direct reduction of carbon dioxide (CO2) emissions due to its better Carbon to Hydrogen ratio (C/H) compared to common fossil fuels, e.g. gasoline or diesel. Moreover, an optimized engine design suiting the advantages of natural gas in knock resistance and lean mixtures keeping in mind the challenges of power density, efficiency and cold start manoeuvres. In the public funded project MethMag (Methane lean combustion engine) a gasoline fired three-cylinder-engine is redesigned based on this change of requirements and benchmarked against the previous gasoline engine.
Technical Paper

Experimental and Numerical Investigation for Improved Mixture Formation of an eFuel Compared to Standard Gasoline

2021-09-05
2021-24-0019
The increasingly stringent targets for the automotive industry towards sustainability are being addressed not only with the improvement of engine efficiency, but also with growing research about alternative, synthetic, and CO2-neutral fuels. These fuels are produced using renewable energy sources, with the goal of making them CO2-neutral and also to reduce a significant amount of engine emissions, especially particulate matter (PM) and total hydrocarbon (THC). The objective of this work is to study the behavior and the potential of an eFuel developed by Porsche, called POSYN (POrscheSYNthetic) and to compare it with a standard gasoline.
Journal Article

Experimental and Numerical Investigation of Spark Plug and Passive Pre-Chamber Ignition on a Single-Cylinder Engine with Hydrogen Port Fuel Injection for Lean Operations

2023-06-26
2023-01-1205
The race towards zero carbon emissions is ongoing with the need to reduce the consumption of fossil energy resources. This demands immediate and reliable developments regarding technical environmentally friendly solutions for the power and transportation sectors. An alternative way to achieve a carbon-free powertrain is the use of green hydrogen for internal combustion engines. In this work the self-designed Fraunhofer single-cylinder engine with a displacement volume of 430 mm3 developed for extreme lean combustion and passive pre-chamber ignition was adapted for hydrogen engine operation. With hydrogen combustion, the customized cooling system resulting in low metal temperatures is simulated and optimized to avoid hot spots in the combustion chamber. The investigated single-cylinder engine is characterized by a compression ratio of 12.2, port fuel injection and a conventional spark plug.
Technical Paper

Improvement of a High-Performance CNG-Engine Based on an innovative Virtual Development Process

2011-09-11
2011-24-0140
Methane as an alternative fuel in motorsports? Actually this solution is well known for the reduction of CO₂ emissions but apparently it does not really awake race feelings. At the 2009 edition of the 24-hour endurance race on the Nürburgring the Volkswagen Motorsport GmbH, in addition to vehicles powered by gasoline engines, introduced two vehicles powered by innovative turbo-charged CNG engines for the first time. The aim was to prove, that also an "environment-friendly" concept is able to provide the required efficiency, dynamic and reliability for a successful participation in motorsports. After the success in the 2009 edition the engagement has been continued also in 2010, this time exclusively with CNG vehicles. Focusing on the CO₂ emission, reclusively the higher hydrogen content of methane which represents the main component of NG leads to a CO₂ reduction during the combustion of about 20% compared to gasoline.
Technical Paper

Investigation on different Injection Strategies in a Direct-Injected Turbocharged CNG-Engine

2006-09-14
2006-01-3000
Natural gas as a fuel for internal combustion engines is a combustion technology showing great promise for the reduction of CO2 and particulate matter. To demonstrate the potential of natural gas direct injection, especially in combination with supercharging, some experimental investigations were carried out using a single-cylinder engine unit with lateral injector position. For this purpose different injection valve nozzles, piston crown geometries as well as operating strategies were investigated. First experimental results show that it is also possible to better support the combustion process by providing a late injection of a part of the fuel, near ignition point, so that the additional induced turbulence can speed up the flame propagation 1 Mixture formation with gaseous fuels due to its low mass density is more critical than in gasoline engines, because even high injection velocities still produce very low fuel penetration.
Technical Paper

LPG and Prechamber as Enabler for Highly Performant and Efficient Combustion Processes Under Stoichiometric Conditions

2021-09-05
2021-24-0032
The European Union has defined legally binding CO2-fleet targets for new cars until 2030. Therefore, improvement of fuel economy and carbon dioxide emission reduction is becoming one of the most important issues for the car manufacturers. Today’s conventional car powertrain systems are reaching their technical limits and will not be able to meet future CO2 targets without further improvement in combustion efficiency, using low carbon fuels (LCF), and at least mild electrification. This paper demonstrates a highly efficient and performant combustion engine concept with a passive pre-chamber spark plug, operating at stoichiometric conditions and powered with liquefied petroleum gas (LPG). Even from fossil origin, LPG features many advantages such as low carbon/hydrogen ratio, low price and broad availability. In future, it can be produced from renewables and it is in liquid state under relatively low pressures, allowing the use of conventional injection and fuel supply components.
Technical Paper

Methods to Investigate the Importance of eFuel Properties for Enhanced Emission and Mixture Formation

2021-09-05
2021-24-0017
Synthetic fuels from renewable energy sources can be a significant contribution on the roadmap to sustainable mobility. Porsche sees electro-mobility as the top priority, but eFuels produced by renewable electricity are an effective addition to support the defossilization of the transportation sector. In addition to the sustainability aspect, the composition and properties of eFuels can be optimized via the synthetic fuel production path. The use of optimized fuel formulations has a direct influence on combustion and emission behavior. The latter is one focus of the development of internal combustion engines in the wake of constantly tightening emissions legislation. The increasing restrictions on vehicles with internal combustion engines require the reduction of emissions. Particulate matter emissions are among others the focus of criticism. The composition and properties of fuels can reduce particulate emissions and the formation of unburned hydrocarbons to a high degree.
Technical Paper

Numerical and Experimental Studies on Mixture Formation with an Outward-Opening Nozzle in a SI Engine with CNG-DI

2016-04-05
2016-01-0801
CNG direct injection is a promising technology to promote the acceptance of natural gas engines. Among the beneficial properties of CNG, like reduced pollutants and CO2 emissions, the direct injection contributes to a higher volumetric efficiency and thus to a better driveability, one of the most limiting drawbacks of today’s CNG vehicles. But such a combustion concept increases the demands on the injection system and mixture formation. Among other things it requires a much higher flow rate at low injection pressure. This can be only provided by an outward-opening nozzle due to its large cross-section. Nevertheless its hollow cone jet with a specific propagation behavior leads to an adverse fuel-air distribution especially at higher loads under scavenging conditions. This paper covers numerical and experimental analysis of CNG direct injection to understand its mixture formation.
Technical Paper

Post-Oxidation Phenomena as a Thermal Management Strategy for Automotive After-Treatment Systems: Assessment by Means of 3D-CFD Virtual Development

2024-04-09
2024-01-2629
The target of the upcoming automotive emission regulations is to promote a fast transition to near-zero emission vehicles. As such, the range of ambient and operating conditions tested in the homologation cycles is broadening. In this context, the proposed work aims to thoroughly investigate the potential of post-oxidation phenomena in reducing the light-off time of a conventional three-way catalyst. The study is carried out on a turbocharged four-cylinder gasoline engine by means of experimental and numerical activities. Post oxidation is achieved through the oxidation of unburned fuel in the exhaust line, exploiting a rich combustion and a secondary air injection dedicated strategy. The CFD methodology consists of two different approaches: the former relies on a full-engine mesh, the latter on a detailed analysis of the chemical reactions occurring in the exhaust line.
Journal Article

The Virtual Engine Development for Enhancing the Compression Ratio of DISI-Engines Combining Water Injection, Turbulence Increase and Miller Strategy

2020-06-30
2020-37-0010
The increase in efficiency is the focus of current engine development by adopting different technologies. One limiting factor for the rise of SI-engine efficiency is the onset of knock, which can be mitigated by improving the combustion process. HCCI/SACI represent sophisticated combustion techniques that investigate the employment of pre-chamber with lean combustion, but the effective use of them in a wide range of the engine map, by fulfilling at the same time the need of fast load control are still limiting their adoption for series engine. For these reasons, the technologies for improving the characteristics of a standard combustion process are still largely investigated. Among these, water injection, in combination with the Miller cycle, offers the possibility to increase the knock resistance, which in turn enables the rise of the engine geometric compression ratio.
Technical Paper

Thermodynamics of Lean Hydrogen Combustion by Virtual Investigations on a Single-Cylinder Engine with Port Fuel Injection and Pre-Chamber Ignition

2023-08-28
2023-24-0063
In order to achieve the climate targets, a mix of different powertrain technologies must be pursued to effectively reduce emissions. By producing hydrogen based on renewable energy sources, it becomes a reasonable choice for fueling internal combustion engines. The specific molecular properties of hydrogen thereby open up new possibilities for favorably influencing the combustion process of engines. The present paper deals with the analysis of a single-cylinder engine with passive pre-chamber ignition and a port fuel injection system, which was adapted for lean hydrogen operation. In this way, the test unit was operated in various load and speed ranges with lambda values from 1.5 to 2.5 and achieved up to 23 bar indicated mean effective pressure. The focus of this work is on the numerical investigation of the hydrogen combustion and its effects on the engine system. Special attention is hereby paid to the influence of different lambda operations.
Technical Paper

Virtual Development of Injector Spray Targeting by Coupling 3D-CFD Simulations with Optical Investigations

2020-04-14
2020-01-1157
Further improvements of internal combustion engines to reduce fuel consumption and to face future legislation constraints are strictly related to the study of mixture formation. The reason for that is the desire to supply the engine with homogeneous charge, towards the direction of a global stoichiometric blend in the combustion chamber. Fuel evaporation and thus mixture quality mostly depend on injector atomization features and charge motion within the cylinder. 3D-CFD simulations offer great potential to study not only injector atomization quality but also the evaporation behavior. Nevertheless coupling optical measurements and simulations for injector analysis is an open discussion because of the large number of influencing parameters and interactions affecting the fuel injection’s reproducibility. For this purpose, detailed numerical investigations are used to describe the injection phenomena.
Technical Paper

Virtual Development of a Single-Cylinder Engine for High Efficiency by the Adoption of eFuels, Methanol, Pre-Chamber and Millerization

2022-06-14
2022-37-0018
The new CO2 and emissions limits imposed to European manufacturers require the adoption of different innovative solutions, such as the use of potentially CO2-neutral synthetic fuels alongside a tailored development of the internal combustion engine, as an excellent solution to accompany the hybridization of vehicles. Dr.Ing. h.c. F. Porsche AG and FKFS, already partners for the development of engines with eFuels, propose a new study carried out on a research engine, investigating the combination of Porsche synthetic gasoline (POSYN) with an engine with millerization and passive pre-chamber. The use of CO2-neutral fuels allow for an immediate reduction in CO2 emissions from all cars already on the market, particularly since Porsche is one of the manufacturers whose cars remain in use for the longest time. The data collected on a single-cylinder engine test bench, for different fuels, with conventional spark plug are used as input for the calibration of 3D-CFD simulations.
Technical Paper

Virtual Investigation of Real Fuels by Means of 3D-CFD Engine Simulations

2019-09-09
2019-24-0090
The reduction of both harmful emissions (CO, HC, NOx, etc.) and gases responsible for greenhouse effects (especially CO2) are mandatory aspects to be considered in the development process of any kind of propulsion concept. Focusing on ICEs, the main development topics are today not only the reduction of harmful emissions, increase of thermodynamic efficiency, etc. but also the decarbonization of fuels which offers the highest potential for the reduction of CO2 emissions. Accordingly, the development of future ICEs will be closely linked to the development of CO2 neutral fuels (e.g. biofuels and e-fuels) as they will be part of a common development process. This implies an increase in development complexity, which needs the support of engine simulations. In this work, the virtual modeling of real fuel behavior is addressed to improve current simulation capabilities in studying how a specific composition can affect the engine performance.
X