Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

1-D Thermal Simulation and Experimental Validation of Li-Ion Battery Pack Liquid Cooling System

2023-09-14
2023-28-0012
The battery cooling system is one of the most critical parts for the safe and efficient operation of the Li-ion battery pack in EVs. Battery liquid cooling system is most commonly used. This paper represents a comprehensive study of the electric vehicle battery liquid cooling system design and performance using the 1D tool and experimental validation. The 1D model includes the battery thermal load, cooling system components, and different ambient conditions. The cooling system components are calibrated using the experimental performance data of the components. The 1D model is used to evaluate the effect of fan speed, ambient temperature, compressor speed, and coolant flow rate on the battery cooling system and to optimize the component sizing. The results are then experimentally validated in a climate chamber, and the simulation results show good agreement with experimental results. The study's findings provide a good understanding of the Li-ion liquid cooling system.
Technical Paper

1D Engine Simulation Approach for Optimizing Engine and Exhaust Aftertreatment Thermal Management for Passenger Car Diesel Engines by Means of Variable Valve Train (VVT) Applications

2018-04-03
2018-01-0163
Using a holistic 1D engine simulation approach for the modelling of full-transient engine operation, allows analyzing future engine concepts, including its exhaust gas aftertreatment technology, early in the development process. Thus, this approach enables the investigation of both important fields - the thermodynamic engine process and the aftertreatment system, together with their interaction in a single simulation environment. Regarding the aftertreatment system, the kinetic reaction behavior of state-of-the-art and advanced components, such as Diesel Oxidation Catalysts (DOC) or Selective Catalytic Reduction Soot Filters (SCRF), is being modelled. Furthermore, the authors present the use of the 1D engine and exhaust gas aftertreatment model on use cases of variable valve train (VVT) applications on passenger car (PC) diesel engines.
Technical Paper

1D Modelling of Fuel Cell Losses Including the Water and Thermal Management

2021-09-22
2021-26-0225
Fuel cells plays significant role in the automotive sector to substitute the fossil fuels and complement to electric vehicles. In the fuel cell vehicles fuel cell stack is major component. It is important to have a robust fuel cell model that can simulate the behaviour of the fuel cell stack under various operating conditions in order to study the functioning of a fuel cell and optimize its operating parameters and achieve the best efficiency in operation. The operating voltage of the fuel cell at different current densities depends upon thermodynamic parameters like temperature and pressure of the reactants as well factors like the state of humidification of the electrolyte membrane. A 1D model is developed to capture the variation in voltage at different current densities due to internal losses and changes to operating conditions like temperature and pressure.
Technical Paper

1D Modelling of Thermal Management of a Jet Trainer Aircraft

2023-03-07
2023-01-1005
Most of current jet aircraft circulate fuel on the airframe to match heat loads with available heat sink. The demands for thermal management in wide range of air vehicle systems are growing rapidly along with the increased mission power, vehicle survivability, flight speeds, and so on. With improved aircraft performance and growth of heat load created by Aircraft Mounted Accessory Drive (AMAD) system and hydraulic system, effectively removing the large amount of heat load on the aircraft is gaining crucial importance. Fuel is becoming heat transfer fluid of choice for aircraft thermal management since it offers improved heat transfer characteristics and offers fewer system penalties than air. In the scope of this paper, an AMESim model is built which includes airframe fuel and hydraulic systems with AMAD gearbox of a jet trainer aircraft. The integrated model will be evaluated for thermal performance.
Technical Paper

1D Transient Thermal Model of an Automotive Electric Engine Cooling Fan Motor

2016-04-05
2016-01-0214
For the thermal management of an automobile, the induced airflow becomes necessary to enable the sufficient heat transfer with ambient. In this way, the components work within the designed temperature limit. It is the engine-cooling fan that enables the induced airflow. There are two types of engine-cooling fan, one that is driven by engine itself and the other one is electrically driven. Due to ease in handling, reduced power consumption, improved emission condition, electrically operated fan is becoming increasingly popular compared to engine driven fan. The prime mover for electric engine cooling fan is DC motor. Malfunction of DC motor due to overheating will lead to engine over heat, Poor HVAC performance, overheating of other critical components in engine bay. Based upon the real world driving condition, 1D transient thermal model of engine cooling fan motor is developed. This transient model is able to predict the temperature of rotor and casing with and without holes.
Technical Paper

1D-3D Coupled Analysis for Motor Thermal Management in an Electric Vehicle

2022-03-29
2022-01-0214
Motor thermal management of electric vehicles (EVs) is becoming more significant due to its close relations to vehicle aerodynamic performance and power consumption, while computer aided engineering (CAE) plays an important role in its development. A 1D-3D coupled model is established to characterize transient thermal performance of the motor in an electric vehicle on a high performance computer (HPC) platform. The 1D motor thermal management model is integrated with the 1D powertrain model, and a 3D thermal model is established for the motor, while online data exchange is realized between the 1D and 3D models. The 1D model gives boundaries such as inlet coolant temperature, mass flowrate and motor heat generation to the 3D model, while the 3D model gives back boundaries such as heat transfer to coolant simultaneously. Transient simulations are performed for the 140kph(20°C) driving cycle, and the model is calibrated with experimental data.
Journal Article

1D-3D Online Coupled Transient Analysis for Powertrain-Control Integrated Thermal Management in an Electric Vehicle

2021-04-06
2021-01-0237
Thermal management in electric vehicles (EVs) has attracted more attention due to its increasing significance, and computer aided engineering (CAE) plays an important role in its development. A 1D-3D online coupling approach is proposed to completely characterize transient thermal performance of an electric vehicle on a high performance computer (HPC) platform. The 1D thermal management model, consisting of air conditioning, motor cooling and battery cooling systems, is integrated with the 1D control strategy model and powertrain model consisting of motor, battery, driver and vehicle models. The 3D model is established for the air flow around the full vehicle and through its underhood. The 3D model gives boundaries such as heat exchanger air flowrates and heat flows on some component surfaces to the 1D model, while 1D gives back boundaries such as heat exchanger heat loads, component surface temperatures and fan speed simultaneously.
Technical Paper

2005 Ford GT- Maintaining Your Cool at 200 MPH

2004-03-08
2004-01-1257
An integrated engineering approach using computer modeling, laboratory and vehicle testing enabled the Ford GT engineering team to achieve supercar thermal management performance within the aggressive program timing. Theoretical and empirical test data was used during the design and development of the engine cooling system. The information was used to verify design assumptions and validate engineering efforts. This design approach allowed the team to define a system solution quickly and minimized the need for extensive vehicle level testing. The result of this approach was the development of an engine cooling system that adequately controls air, oil and coolant temperatures during all driving and environmental conditions.
Technical Paper

3-D Modeling of Heat Transfer in Diesel Engine Piston Cooling Galleries

2005-04-11
2005-01-1644
Ever increasing specific power of diesel engines has put huge demand on effective thermal management of the pistons for the desired reliability and durability. The piston temperature control is commonly achieved by injecting cooling oil into piston galleries, but the design of the cooling system as well as the boundary conditions used in FEA simulations have so far relied mostly on empirical methods. A numerical procedure using 3D computational fluid dynamics (CFD) has therefore been developed to simulate the cooling process and to estimate the cooling efficiency of gallery. The model is able to predict the detailed oil flow and heat transfer in gallery, of different designs and engine applications, under dynamic conditions. The resulted spatially resolved heat transfer coefficient from the CFD model, with better accuracy, enables improved prediction of piston temperature in finite element analysis (FEA).
Technical Paper

3.2 KWH Battery Pack Using 18 Army Standard Lithium ion Rechargeable Batteries

2006-11-07
2006-01-3099
A very high power source solution was developed for the Non Line of Sight Launch System Container Launch Unit (NLOS-LS CLU). The power source solution has been shown to be capable of providing the required 72 continuous hours of operation and high power (3560 watts) to sustain launch capability. The power source consists of 18 BB-2590/U batteries connected in parallel in three layers. Several CLU battery systems have been delivered to the PEO and have been well accepted. The Army is using standard rechargeable batteries, is currently being upgraded with SMBus capability and higher capacity lithium-ion cells. For this reason, the CLU power source has been manufactured with SMBus capability. This paper will discuss the performance of one layer of the CLU power source to simulate the whole power load.
Technical Paper

3D FEA Thermal Modeling with Experimentally Measured Loss Gradient of Large Format Ultra-Fast Charging Battery Module Used for EVs

2022-03-29
2022-01-0711
A large amount of heat is generated in electric vehicle battery packs during high rate charging, resulting in the need for effective cooling methods. In this paper, a prototype liquid cooled large format Lithium-ion battery module is modeled and tested. Experiments are conducted on the module, which includes 31Ah NMC/Graphite pouch battery cells sandwiched by a foam thermal pad and heat sinks on both sides. The module is instrumented with twenty T-type thermocouples to measure thermal characteristics including the cell and foam surface temperature, heat flux distribution, and the heat generation from batteries under up to 5C rate ultra-fast charging. Constant power loss tests are also performed in which battery loss can be directly measured.
Technical Paper

3beLiEVe: Towards Delivering the Next Generation of LMNO Li-Ion Battery Cells and Packs Fit for Electric Vehicle Applications of 2025 and Beyond

2021-04-06
2021-01-0768
This paper aims at providing the scientific community with an overview of the H2020 European project 3beLiEVe and of its early achievements. The project has the objective of delivering the next generation Lithium-Nickel-Manganese-Oxide (LNMO) battery cells, in line with the target performance of the “generation 3b” Li-ion battery technology, as per EU SET-plan Action 7. Its activities are organized in three main pillars: (i) developing the 3b next generation LMNO battery cell, equipped with (ii) an array of internal and external sensors and complemented by (iii) manufacturing and recycling processes at scale. At present, 3beLiEVe is approaching the completion of its first project year (out of a total project planned duration of 42 months). Hence this paper, beyond presenting the overall project’s structure and objectives, focuses on its earliest results in the fields of the cell material formulation, arrangement of sensors and design of the battery pack.
Journal Article

48 V High-power Battery Pack for Mild-Hybrid Electric Powertrains

2020-04-14
2020-01-0441
Mild hybridisation, using a 48 V system architecture, offers fuel consumption benefits approaching those achieved using high-voltage systems at a much lower cost. To maximise the benefits from a 48 V mild-hybrid system, it is desirable to recuperate during deceleration events at as high a power level as possible, whilst at the same time having a relatively compact and low cost system. This paper examines the particular requirements of the battery pack for such a mild-hybrid application and discusses the trade-offs between battery power capabilities and possible fuel consumption benefits. The technical challenges and solutions to design a 48 V mild-hybrid battery pack are presented with special attention to cell selection and the thermal management of the whole pack. The resulting battery has been designed to achieve a continuous-power capability of more than 10 kW and a peak-power rating of up to 20 kW.
Technical Paper

50 KVA High Temperature Bi-directional Converter for On-Engine Application in More Electric Aircraft

2014-09-16
2014-01-2111
The transition towards More Electric Aircraft (MEA) architectures has challenges relating to integration of power electronics with the starter generator system for on-engine application. To efficiently operate the power electronics in the hostile engine environment at high switching frequency and for better thermal management, use of silicon carbide (SiC) power devices for a bi-directional power converter is examined. In this paper, development of a 50 kVA bi-directional converter operating at an ambient temperature of about 2000C is presented. The design and operation of the converter with details of control algorithm implementation and cooling chamber design are also discussed.
Technical Paper

A 5 Phase Brake Insulator Engineering Selection Process

2006-10-08
2006-01-3220
Brake squeal signatures (2 kHz to 18 kHz) have tonal content highly dependent on the specific brake system structural architecture. The challenge in minimizing squeal involves correctly identifying the conditions (temperature, apply pressure, rotor speed as some basic parameters) of occurrence, defining the underlying structural dynamics of the system and applying appropriate suppression solutions. The quantitative metric of improvement is the cumulative event percentage of occurrence. Design variables of the brake system and performance attribute targets extend the challenge beyond the level of just reducing noise. Consideration of material costs, manufacturing/assembly factors, durability, thermal management as well as other factors narrow the solution space significantly. Compressed late stage development is not uncommon in reaching acceptable levels of performance and is a primary reason for following a well defined process flow with provision for alternative solutions.
Technical Paper

A Battery Electronics Unit (BEU) for Balancing Lithium-Ion Batteries

2008-11-11
2008-01-2907
Lithium-ion batteries have become prominent in many applications, because of their high energy-to-weight ratio. Unlike other types of cells, lithium-ion cells do not exhibit natural cell-to-cell balancing mechanisms. Over time, lithium-ion batteries may become unbalanced, leading to one or more cells becoming overcharged, causing cell damage. Cell balancing is required to achieve the maximum mission life for a lithium-ion battery, by reducing the possibility of overcharging or deep discharging. A BEU has been developed that uses a high-efficiency autonomous balancing circuit to maintain uniform charge on the series cells in a 24-cell battery. The balancing circuits operate continuously in all modes of operation, including charge, discharge and standby. The cell balancing currents are proportional to the voltage difference between the cells, gradually diminishing to zero as the cells achieve balance.
Technical Paper

A CFD-Based Numerical Evaluation, Assessment and Optimization of Conjugate Heat Transfer for Aerodynamic Cooling of a Wheel-Hub-Motors in Micro-Mobility Vehicles

2023-04-11
2023-01-0760
Micro-mobility vehicles such as electric scooters and bikes are increasingly used for urban transportation; their designs usually trade off performance and range. Addressing thermal and cooling issues in such vehicles could enhance performance, reliability, life, and range. Limited packaging space within the wheels precludes the use of complex cooling systems that would also increase the cost and complexity of these mass-produced wheel motors. The present study begins by evaluating the external aerodynamics of the scooter to characterise the airflow conditions near the rotating wheel; then, a steady-state conjugate heat transfer model of a commercially available wheel hub motor (500W) is created using commercial computational fluid dynamics (CFD) software, StarCCM+. The CAD model of the motor used for this analysis has an external rotor permanent magnet (PM) brushless DC topology.
Technical Paper

A Case Study of Compressor Surge Related Noise on Turbocharged 2.0-L Gasoline Engine

2021-09-22
2021-26-0282
Till recently supercharging was the most accepted technique for boost solution in gasoline engines. Recent advents in turbochargers introduced turbocharging technology into gasoline engines. Turbocharging of gasoline engines has helped in powertrains with higher power density and less overall weight. Along with the advantages in performance, new challenges arise, both in terms of thermal management as well as overall acoustic performance of powertrains. The study focuses mainly on NVH aspects of turbocharging of gasoline engines. Compressor surge is a most common phenomenon in turbochargers. As the operating point on the compressor map moves closer to the surge line, the compressor starts to generate noise. The amplitude and frequency of the noise depends on the proximity of the operating point to the surge line. The severity of noise can be reduced by selecting a turbocharger with enough compressor surge margin.
Technical Paper

A Combined CFD and Flow Network Modeling Approach for Vehicle Underhood Air Flow and Thermal Analysis

2009-04-20
2009-01-1150
Conventional CFD analysis for underhood thermal management is quite involved and time consuming because of the complex geometry and flow distributions. As an alternative to full scale CFD modeling, a hybrid method of vehicle underhood air flow and thermal analysis is presented in this paper, using the principle of flow network modeling (FNM) and CFD. In the present method, the entire flow domain in underhood is broken into various air flow passages, which are represented in a FNM model by nodes and links. For each individual air flow passage selected, CFD analysis is carried out to obtain the pressure drop (ΔP) vs. flow rate (Q) relation by considering various air flow rates, leading to a characteristic curve for each passage. The distribution of flow rates and pressure is then determined by FNM through solving 1D mass and momentum conservation equations over the entire flow network.
Technical Paper

A Comparative Analysis of Techniques for Electric Vehicle Battery Prognostics and Health Management (PHM)

2011-09-13
2011-01-2247
Batteries are widely used as storage devices and they have recently gained popularity due to their increasing smaller sizes, lighter weights and greater energy densities. These characteristics also render them suitable for powering electric vehicles. However, a key gap exists in that batteries are solely used as storage devices with a lack of information flow. Next-generation battery technologies will constitute the enabling tools that would lead to information-rich batteries, thus allowing the transparent assessment of a battery's health as well as the prediction of a battery's remaining-useful-life (RUL) and its subsequent impact on vehicle mobility. Various methods and techniques have been employed to predict battery RUL in order to improve the accuracy of the State of Charge (SoC) estimation.
X