Refine Your Search

Search Results

Viewing 1 to 9 of 9
Technical Paper

Age-Specific Injury Risk Curves for Distributed, Anterior Thoracic Loading of Various Sizes of Adults Based on Sternal Deflections

2016-11-07
2016-22-0001
Injury Risk Curves are developed from cadaver data for sternal deflections produced by anterior, distributed chest loads for a 25, 45, 55, 65 and 75 year-old Small Female, Mid-Size Male and Large Male based on the variations of bone strengths with age. These curves show that the risk of AIS ≥ 3 thoracic injury increases with the age of the person. This observation is consistent with NASS data of frontal accidents which shows that older unbelted drivers have a higher risk of AIS ≥ 3 chest injury than younger drivers.
Technical Paper

Brain Injury Risk Assessment of Frontal Crash Test Results

1994-03-01
941056
An objective, biomechanically based assessment is made of the risks of life-threatening brain injury of frontal crash test results. Published 15 ms HIC values for driver and right front passenger dummies of frontal barrier crash tests conducted by Transport Canada and NHTSA are analyzed using the brain injury risk curve of Prasad and Mertz. Ninety-four percent of the occupants involved in the 30 mph, frontal barrier compliance tests had risks of life-threatening brain injury less than 5 percent. Only 3 percent had risks greater than 16 percent which corresponds to 15 ms HIC > 1000. For belt restrained occupants without head contact with the interior, the risks of life-threatening brain injury were less than 2 percent. In contrast, for the more severe NCAP test condition, 27 percent of the drivers and 21 percent of the passengers had life-threatening brain injury risks greater than 16 percent.
Technical Paper

Effects of Shoulder Belt Limit Forces on Adult Thoracic Protection in Frontal Collisions

2007-10-29
2007-22-0015
Three-point restraint systems have been installed in vehicles since the early 1960s. However, it wasn't until the automatic protection rule became effective for 1987 Model Year vehicles that manufacturers began installing 3-point restraints with force-limiting shoulder belts and frontal airbags for the driver and right front passenger. This was the first time that all vehicle manufacturers had to certify that their cars would meet the 50th percentile, adult male protection requirements in the 48 km/h frontal, rigid-barrier test specified in FMVSS 208. To assess the effectiveness of these certified 3-point restraint systems, a search was done of the 1988-2005 NASS data for 3-point belted, front outboard-seated, adult occupants in passenger vehicles that were equipped with airbags and that were involved in frontal, towaway collisions.
Technical Paper

Hybrid III Sternal Deflection Associated with Thoracic Injury Severities of Occupants Restrained with Force-Limiting Shoulder Belts

1991-02-01
910812
A relationship between the risk of significant thoracic injury (AIS ≥ 3) and Hybrid III dummy sternal deflection for shoulder belt loading is developed. This relationship is based on an analysis of the Association Peugeot-Renault accident data of 386 occupants who were restrained by three-point belt systems that used a shoulder belt with a force-limiting element. For 342 of these occupants, the magnitude of the shoulder belt force could be estimated with various degrees of certainty from the amount of force-limiting band ripping. Hyge sled tests were conducted with a Hybrid III dummy to reproduce the various degrees of band tearing. The resulting Hybrid III sternal deflections were correlated to the frequencies of AIS ≥ 3 thoracic injury observed for similar band tearing in the field accident data. This analysis indicates that for shoulder belt loading a Hybrid III sternal deflection of 50 mm corresponds to a 40 to 50% risk of an AIS ≥ 3 thoracic injury.
Technical Paper

Restraint Performance of the 1973-76 GM Air Cushion Restraint System

1988-02-01
880400
Case reviews are given of deployment accidents of the GM 1973-76 air cushion restraint system where the occupant injury was AIS 3 or greater. Many of these injuries occurred in frontal accidents of minor to moderate collision severity where there was no intrusion or distortion of the occupant compartment. Dummy and animal test results are noted that indicate that these types of injuries could have occurred if the occupant was near the air cushion module at the time of cushion deployment. An analysis is given that indicates that for frontal accidents a restraint effectiveness of 50 percent in mitigating AIS 3 or greater injuries might be achieved if an air cushion system can be designed which would not seriously injure out-of-position occupants while still providing restraint for normally seated occupants.
Technical Paper

SID-IIs Beta+-Prototype Dummy Biomechanical Responses

1998-11-02
983151
This paper presents the results of biomechanical testing of the SID-IIs beta+-prototype dummy by the Occupant Safety Research Partnership. The purpose of this testing was to evaluate the dummy against its previously established biomechanical response corridors for its critical body regions. The response corridors were scaled from the 50th percentile adult male corridors defined in International Standards Organization Technical Report 9790 to corridors for a 5th percentile adult female, using established International Standards Organization procedures. Tests were performed for the head, neck, shoulder, thorax, abdomen and pelvis regions of the dummy. Testing included drop tests, pendulum impacts and sled tests. The biofidelity of the SID-IIs beta+-prototype was calculated using a weighted biomechanical test response procedure developed by the International Standards Organization.
Technical Paper

Small Car Air Cushion Performance Considerations

1985-04-01
851199
A critical performance issue in the development of any air cushion restraint system is the dichotomy that exists between the inflation rate required to meet the 30 mph frontal, rigid barrier restraint performance requirements and the effect that this parameter has on increasing the risk of deployment-induced injuries to out-of-position occupants. In general, small cars experience greater vehicle deceleration levels than large vehicles in FMVSS 208, 30 mph frontal, rigid barrier tests due to tighter packaging of their front-end components. In order to meet the FMVSS 208 performance requirements for such cars, the small car air cushion must be thicker and inflated faster than the large car air cushion. Such air cushion technology will increase the risk of life-threatening, deployment-induced injuries to out-of-position occupants of the small car.
Technical Paper

The Effect of Limiting Shoulder Belt Load with Air Bag Restraint

1995-02-01
950886
The dilemma of using a shoulder belt force limiter with a 3-point belt system is selecting a limit load that will balance the reduced risk of significant thoracic injury due to the shoulder belt loading of the chest against the increased risk of significant head injury due to the greater upper torso motion allowed by the shoulder belt load limiter. However, with the use of air bags, this dilemma is more manageable since it only occurs for non-deploy accidents where the risk of significant head injury is low even for the unbelted occupant. A study was done using a validated occupant dynamics model of the Hybrid III dummy to investigate the effects that a prescribed set of shoulder belt force limits had on head and thoracic responses for 48 and 56 km/h barrier simulations with driver air bag deployment and for threshold crash severity simulations with no air bag deployment.
Technical Paper

Thoracic Injury Assessment of Belt Restraint Systems Based on Hybrid III Chest Compression

1991-10-01
912895
Measurement of chest compression is vital to properly assessing injury risk for restraint systems. It directly relates chest loading to the risk of serious or fatal compression injury for the vital organs protected by the rib cage. Other measures of loading such as spinal acceleration or total restraint load do not separate how much of the force is applied to the rib cage, shoulders, or lumbar and cervical spines. Hybrid III chest compression is biofidelic for blunt impact of the sternum, but is “stiff” for belt loading. In this study, an analysis was conducted of two published crash reconstruction studies involving belted occupants. This provides a basis for comparing occupant injury risks with Hybrid III chest compression in similar exposures. Results from both data sources were similar and indicate that belt loading resulting in 40 mm Hybrid III chest compression represents a 20-25% risk of an AIS≥3 thoracic injury.
X