Refine Your Search

Topic

Search Results

Video

A Method for Testing GPS in Obstructed Environments Where GPS/INS Reference Systems Can Be Ineffective

2011-11-17
When vehicles share certain information wirelessly via Dedicated Short Range Communications (DSRC), they enable a new layer of electronic vehicle safety that, when needed, can generate warnings to drivers and even initiate automatic preventive actions. Vehicle location and velocity provided by Global Navigation Systems (GNSS), including GPS, are key in allowing vehicle path estimation. GNSS is effective in accurately determining a vehicle's location coordinates in most driving environments, but its performance suffers from obstructions in dense urban environments. To combat this, augmentations to GNSS are being contemplated and tested. This testing has been typically done using a reference GNSS system complimented by expensive military-grade inertial sensors, which can still fail to provide adequate reference performance in certain environments.
Video

Advances in Exhaust Temperature Sensing and their Applicability for Diesel Emission Diagnostics

2012-01-24
Sensing exhaust gas temperature is a key component in diesel after treatment systems for both control and diagnostics. Accuracy varies significantly depending upon the sensing technology and implementation in the system. Prior published work has demonstrated that resistance based temperature sensors are not able to achieve the system accuracy required for advanced diagnostics over the life of the emission system. This presentation will show that it is feasible to achieve better than �10�C end of life system accuracy by means of active thermocouple technology. Results from tests at Michigan Technological University will be used to illustrate diagnostic uncertainty related to the application of temperature sensors and a specific DOC/DPF example will be used to show the benefits of accurate temperature based diagnostics. Presenter D. P. Culbertson, Watlow Gordon
Video

Airbus - EMAs for Flight Controls Actuation System - An Important Step Achieved in 2011

2012-03-21
With the growing use of carbon fiber composite structure in Aircraft Manufacturing, the challenge of drilling carbon fiber stacked with Titanium has become a focus point. Due to the abrasive nature of the carbon fiber (CF), cutting tool life is relatively short when drilling carbon fiber stalked with Titanium. A common drill wear indicator is exit burr formation in the Titanium. As drilling tools wear due to the abrasive nature of the CF, the exit burr in the in the Titanium increases. This study seeks to understand the factors that lead to tool wear and exit burr formation. A correlation may be made relating drilling thrust forces with exit burr formation. Different cutting tools geometries and materials are studied using a high speed camera to attempt to understand the factors influencing exit burr formation. Findings are optimized and tested. Decreasing exit burr in the drilling of CF and Titanium may increase tool life thereby reducing tool costs to airframe manufacturers.
Video

Automating AFP Tuning Using a Laser Sensor

2012-03-22
A significant step is achieved on the flight control actuation system toward the more electrical aircraft through the Airbus A380, A400M and the A350 development phase ongoing. The A380/A400M/A350 features a mixed flight control actuation power source distribution, associating electrically powered actuators with conventional FlyByWire hydraulic servocontrols. In the scope of the preparation of the future Airbus Aircraft, this paper presents the perspectives of the use of the EMA technologies for the flight control systems in the more electrical aircraft highlighting the main technical challenges need to treat: jamming susceptibility, ?on board? maintenance reduction, Operational reliability increase, power electronics and power management optimization, and regarding the environmental constraints, the predicted performances; the benefits associated to the optimized utilization of on-board power sources.
Video

Certification of Engine Health Management Systems: Guidelines for Selecting Software Assurance Levels

2012-03-16
The use of Engine Health Management (EHM) systems has been growing steadily in both the civilian and the military aerospace sectors. Barring a few notable exceptions (such as certain temperature and thrust margin monitoring) regulatory authorities around the world have not required these systems to be certified in any way. This is changing rapidly. New airframes and engines are increasingly being designed with the assumption that EHM will be an integral part of the way customers will operate these assets. This leads to a need for better guidelines on how such systems should be certified. The SAE E-32 committee on Propulsion System Health Monitoring is leading an industry-wide effort to develop a set of guidelines for certifying EHM systems.
Video

Component Interoperability For Automotive Safety Issues

2012-05-22
There is a need to accelerate the automotive industry's alert notification and distribution process for quality, reliability, counterfeit, and safety issues that reside in specific electronic components or circuit card assemblies. This paper describes an alert procedure for an entire supply chain that can improve operational efficiency and reduce the costs associated with responding to and resolving those issues. Interoperability: Ability to work with each other. It is frequently unnecessary for separate resources to know the details of how they each work. But they need to have enough common ground to reliably exchange messages quickly without error or misunderstanding. Presenter William Crowley, QTEC Inc.
Video

Detecting Damage and Damage Location on Large Composite Parts using RFID Technology

2012-03-16
Probabilistic methods are used in calculating composite part design factors for, and are intended to conservatively compensate for worst case impact to composite parts used on space and aerospace vehicles. The current method to investigate impact damage of composite parts is visual based upon observation of an indentation. A more reliable and accurate determinant of impact damage is to measure impact energy. RF impact sensors can be used to gather data to establish an impact damage benchmark for deterministic design criteria that will reduce material applied to composite parts to compensate for uncertainties resulting from observed impact damage. Once the benchmark has been established, RF impact sensors will be applied to composite parts throughout their life-cycle to alert and identify the location of impact damage that exceeds the maximum established benchmark for impact.
Video

Development of High Strength Polymer Based Bearing for Automotive Parts under Boundary Lubrication

2012-05-23
Composite bearings of PTFE as the base material have been widely used for automotive parts. However, in recent years, due to downsizing, faster sliding speeds, and tendency to increase the bearing load with high performance, particularly for boundary lubrication conditions, the PTFE-based composite bearing is often worn, making it difficult to apply to some applications. A high strength polymer was selected as an alternative to PTFE base material, and the mechanical properties and performance in a start-stop test, reciprocating sliding test and seizure test were evaluated. Focusing on the characteristics of high strength, by applying a PEEK resin, in each evaluation, it was confirmed that superior performance was achieved compared with a conventional PTFE based composite bearing. Presenter Yohei Takada, Daido Metal Co., Ltd.
Video

Eco+ Solutions in High Performance Plastics from DSM for Automotive.

2012-05-22
In this paper we present the results of full-scale chassis dynamometer testing of two hybrid transit bus configurations, parallel and series and, in addition, quantify the impact of air conditioning. We also study the impact of using an electrically controlled cooling fan. The main trend that is noted, and perhaps expected, is that a significant fuel penalty is encountered during operation with air conditioning, ranging from 17-27% for the four buses considered. The testing shows that the series hybrid architecture is more efficient than the parallel hybrid in improving fuel economy during urban, low speed stop and go transit bus applications. In addition, smart cooling systems, such as the electrically controlled cooling fan can show a fuel economy benefit especially during high AC (or other increased engine load) conditions.
Video

Enabling Exponential Growth of Automotive Network Devices while Reducing the Wired Communication Infrastructure with Security, Reliability, and Safety

2012-05-22
The CAN protocol has served the automotive and related industries well for over twenty-five (25) years now; with the original CAN protocol officially released in 1986 followed by the release of CAN 2.0 in 1991. Since then many variants and improvements in CAN combined with the proliferation of automotive onboard microprocessor based sensors and controllers have resulted in CAN establishing itself as the dominant network architecture for automotive onboard communication in layers one (1) and two (2). Going forward however, the almost exponential growth of automotive onboard computing and the associated devices necessary for supporting said growth will unfortunately necessitate an equivalent growth in the already crowded wired physical infrastructure unless a suitable wireless alternative can be provided. While a wireless implementation of CAN has been produced, it has never obtained real traction within the automotive world.
Video

Enabling New Optical Fiber Applications in Avionics Networks

2012-03-21
Optical fiber has begun replacing copper in avionic networks. So far, however, it has been mainly restricted to non-critical applications (video transmission to the flight deck, IFE?). In order to take advantage of the high-bandwidth, low weight, no EMI properties of optical fibers in all data transmission networks, it will be necessary to improve the testing. One part of the puzzle, which is still missing, is the self-test button: the possibility to check the network and detect potential failures before they occur. The typical testing tool of a technician involved in optical fiber cables is the ?light source ? optical power meter? pair. With this tool, one can measure the insertion loss of the fiber link. A second important parameter, the return loss at each optical connector, is not analysed. In addition, this is only a global measurement, which does not allow the detection of possible weak points.
Video

Exhaust Particle Sensor for OBD Application

2012-02-16
This session covers topics regarding new CI and SI engines and components. This includes analytical, experimental, and computational studies covering hardware development as well as design and analysis techniques. Presenter Joshua Styron, Ford Motor Co.
Video

Experience with Using Hardware-in-the-Loop Simulation for Validation of OBD in Powertrain Electronics Software

2011-12-05
These advanced checks have resulted in development of many new diagnostic monitors, of varying types, and a whole new internal software infrastructure to handle tracking, reporting, and self-verification of OBD related items. Due to this amplified complexity and the consequences surrounding a shortfall in meeting regulatory requirements, efficient and thorough validation of the OBD system in the powertrain control software is critical. Hardware-in-the-Loop (HIL) simulation provides the environment in which the needed efficiency and thoroughness for validating the OBD system can be achieved. A HIL simulation environment consisting of engine, aftertreatment, and basic vehicle models can be employed, providing the ability for software developers, calibration engineers, OBD experts, and test engineers to examine and validate both facets of OBD software: diagnostic monitors and diagnostic infrastructure (i.e., fault memory management).
Video

Fiber Optic Strain Sensor Standardization - International and European Activities

2012-03-16
With the increased demand for high volume, cost-effective, fiber-reinforced thermoplastic parts, the lack of high throughput systems has become more pronounced. Thermoforming as a method to generate complex shapes from a flat preform is dependable and fast. In order to use readily available, standard unidirectional impregnated thermoplastic tape in this process, a flat perform must be created prior to the thermoforming step. Formerly, creating the preform by hand layup was a time consuming and therefore costly, step. Fiberforge�?s patented RELAY� technology overcomes the challenges of handling thermoplastic prepreg tape and provides a solution through the automated creation of a flat preform, referred to as a Tailored Blank?. Producing a part for thermoforming with accurate ply orientation and scrap minimization is now as simple as loading a material spool followed by a pressing a start button. Presenter Christina McClard, Fiberforge
Video

Ford 2011 6.7L Power Stroke® Diesel Engine Combustion System Development

2012-02-16
This session focuses on kinetically controlled combustion. Experimental and simulation studies pertaining to various means of controlling combustion are welcome. Examples are research studies dealing with temperature and composition distribution inside the cylinder and their impact on heat release process. Studies clarifying the role of fuel physical and chemical properties in autoignition are also welcome. Presenter Hanho Yun, General Motors Company
Video

Grants 101: How to Prepare a Winning Application

2012-04-10
The grant application process can be overwhelming. With several years of incentive program guidance, sustainable transportation services and strategic market assessment expertise, Emisstar LLC has the grant process down to a science. During this presentation, Tiffany Hollon will share her experience as an Emisstar staff member to guide you through the primary steps, preparation and follow-up for a typical grant application. Real-life examples and an application walk-through will demystify the most complicated parts of the process. Throughout the discussion, helpful tips persuasion strategies will be shared to help make your application stand apart from the crowd. Presenter Tiffany Hollon, Emisstar LLC
Video

High Speed Machining of CFRP Parts

2012-03-16
High Speed Machining of CFRP Parts Investigation of the influence of new geometries, cutting datas and coolant capabilities on the surface finish of CFRP parts. State of the art: Different CFRP grades and machining conditions make geometry adjustments to the tool necessary. Mechanical failures through machining operations can be avoided in most of the cases. New unidirectional CFRP grades and dry machining processes again lead to machining problems. This study investigates new geometries to avoid heat damage with dry maching and air coolant in case of unidirectional CFRP. With help of a thermo camera and the surface investigation with a scanning electron microscope, heat damage can be analysed and therefore new geometries can be developed and tested. Target is to develop a new multi purpose CFRP geometry to meet the requirements of the future. The reduction of different geometries used leads to major cost savings. Presenter Ingo von Puttkamer, Guhring oHG
Video

High Volume Production of Fiber Reinforced Thermoplastic Parts

2012-03-23
Presented by: Dan Ott Web Industries Director, Business Development, Advanced Composites Market With the growth of Fiber Placement technology as a preferred automation technology in aerospace manufacturing and the rapid growth of new production line installations, it is crucial to provide material in a form which meets all necessary specifications and supports the optimum productivity available from this major capital investment made by the producer of the parts. Achieving these goals happnes when the part designer, AFP machine builder, and the slit tape producer design the best process and format which provides smooth, efficient and rapid delivery of the prepreg slit tape to the Fiber Placement laydown head. Tape size (width), slit width tolerance, spool shape and size, density of prepreg on the spool, spool change-over and handling processes all play a factor in productivity, and creating (or inhibiting) the best ROI on a full-scale AFP production line.
Video

Hybrid Cost Assessment Plus AMT/Hybrid Concept

2012-03-27
Presentation will concentrate on a brief overview of SAE International including history, international focus and SAE electro-mobility ground vehicle standards development activities. The new era of mobility and the driving forces behind it including converging technologies and today�s drive toward �green� will be discussed. Also, standards and technology enablers for vehicle electrification including, the global landscape for EV charging standards and next generation charging method approaches will be reviewed. Additionally, an overview of SAE global EV Battery Standards and activities including industry/government collaborative efforts to develop lithium ion rechargeable energy storage system safety standards will be provided. Presenter Keith Wilson, SAE International
X