Refine Your Search

Topic

Author

Search Results

Technical Paper

Advanced Assembly Solutions for the Airbus RACER Joined-Wing Configuration

2019-09-16
2019-01-1884
The Rapid And Cost Effective Rotorcraft (RACER) is being developed by Airbus Helicopters (AH) to demonstrate a new Vertical Take-Off and Landing configuration to fill the mobility gap between conventional helicopters and aeroplanes. RACER is a compound rotorcraft featuring wings and multiple rotors. The wing arrangement suggested by AH is defined as a staggered bi-plane joined configuration with an upper and a lower straight wing, either side of the fuselage, connected at their outboard extent to form a triangular structure. The ASTRAL consortium, consisting of the University of Nottingham and GE Aviation Systems, are responsible for the design, manufacture, assembly and testing of the wings. Producing an optimised strategy to assemble a joined-wing configuration for a passenger carrying rotorcraft is challenging and novel. The objective of this work concerns all aspects of assembling the joined-wing structure.
Technical Paper

An Enhanced Secondary Control Approach for Voltage Restoration in the DC Distribution System

2016-09-20
2016-01-1985
The paper will deal with the problem of establishing a desirable power sharing in multi-feed electric power system for future more-electric aircraft (MEA) platforms. The MEA is one of the major trends in modern aerospace engineering aiming for reduction of the overall aircraft weight, operation cost and environmental impact. Electrical systems are employed to replace existing hydraulic, pneumatic and mechanical loads. Hence the onboard installed electrical power increases significantly and this results in challenges in the design of electrical power systems (EPS). One of the key paradigms for future MEA EPS architectures assumes high-voltage dc distribution with multiple sources, possibly of different physical nature, feeding the same bus(es). In our study we investigate control approaches to guarantee that the total electric load is shared between the sources in a desirable manner. A novel communication channel based secondary control method is proposed in this paper.
Technical Paper

An Integrated System’s Approach Towards Aero Engine Subsystems Design

2016-09-20
2016-01-2020
This paper proposes an integrated system’s approach towards design of aero-engine subsystems - seals, bearing chamber, generator and power system. In a conventional design approach, the design of the overall system is typically broken-down into subsystems. Therefore, the focus is not on the mutual interaction between different components or subsystems, resulting in a lack of characterization of the overall system performance at the design phase. A systems design approach adopts a much broader outlook, focusing on the overall optimization of the system performance. This paper is divided into two parts. The first part presents an integrated approach for modelling the electrical, mechanical and hydraulic subsystems of aero engines, in order to analyze the fluid dynamics interactions and reduce the transversal shaft vibrations. For this, an in-line starter/generator and an air-riding seal are studied.
Journal Article

Application of Dynamic Phasor Concept in Modeling Aircraft Electrical Power Systems

2013-09-17
2013-01-2083
As future commercial aircraft incorporates more EMAs, the aircraft electrical power system architecture will become a complex electrical distribution system with increased numbers of power electronic converters (PEC) and electrical loads. The overall system performance and the power management for on-board electrical loads are therefore key issues that need to be addressed. In order to understand these issues and identify high pay-off technologies that would enable a major improvement of the overall system performance, it is necessary to study the aircraft EPS at the system level. Due to the switching behaviour of power electronic devices, it is very time-consuming and even impractical to simulate a large-scale EPS with some non-linear and time-varying models. The dynamic phasor (DP) technique is one way to solve that problem.
Technical Paper

Application of Dynamic Phasors for Modeling of Active Front-End Converter for More-Electric Aircraft

2012-10-22
2012-01-2157
The paper deals with the development of active front-end rectifier model based on dynamic phasors concept. The model addresses the functional modeling level as defined by the multi-layer modeling paradigm and is suitable for accelerated simulation studies of the electric power systems under normal, unbalanced and line fault conditions. The performance and effectiveness of the developed model have been demonstrated by comparison against time-domain models in three-phase and synchronous space-vector representations. The experimental verification of the dynamic phasor model is also reported. The prime purpose of the model is for the simulation studies of more-electric aircraft power architectures at system level; however it can be directly applied for simulation study of any other electrical power system interfacing with active front-end rectifiers.
Journal Article

Axiomatic Design of a Reconfigurable Assembly System for Primary Wing Structures

2014-09-16
2014-01-2249
Aerospace assembly systems comprise a vast array of interrelated elements interacting in a myriad of ways. Consequently, aerospace assembly system design is a deeply complex process that requires a multi-disciplined team of engineers. Recent trends to improve manufacturing agility suggest reconfigurability as a solution to the increasing demand for improved flexibility, time-to-market and overall reduction in non-recurring costs. Yet, adding reconfigurability to assembly systems further increases operational complexity and design complexity. Despite the increase in complexity for reconfigurable assembly, few formal methodologies or frameworks exist specifically to support the design of Reconfigurable Assembly Systems (RAS). This paper presents a novel reconfigurable assembly system design framework (RASDF) that can be applied to wing structure assembly as well as many other RAS design problems.
Technical Paper

Comparative Study of Power Sharing Strategies for the DC Electrical Power System in the MEA

2015-09-15
2015-01-2410
In this paper, the load sharing principles in dc-distribution electric power systems (EPS) for future more-electric aircraft (MEA) are investigated. The study is conducted using a potential MEA EPS architecture with multiple sources feeding into the main dc bus. Corresponding reduced-order EPS models are established. The influence of the cable impedance on the load sharing accuracy is analyzed and sharing error is quantized in mathematical equations. In addition, source/load impedance of the droop-controlled system has been derived leading to the discussion of the stability issues in multi-feed dc EPS under different droop control strategies. The influence of load sharing ratio on the EPS stability margins has been investigated. The theoretical findings were supported by time-domain simulations in Matlab/SimPower.
Technical Paper

Control Design for Electric Starter-Generator Based on a High-Speed Permanent-Magnet Machine Fed by an Active Front-End Rectifier

2014-09-16
2014-01-2139
The paper reports the control design for an aircraft electric starter-generator system based-on high-speed permanent magnet machine operated in a flux-weakening mode and controlled by an active front-end rectifier. The proposed system utilizes advances of modern power electronics allowing the use of novel machine types and the introduction of controlled power electronics into the main path of energy flow. The paper focuses on control design for such system and includes development of flux weakening control of high-speed permanent magnet machine and droop control of the system output dc-link current. The achieved analytical design results and the expected system performance are confirmed by time-domain simulations.
Journal Article

Control Design for PMM-Based Generator Fed by Active Front-End Rectifier in More-Electric Aircraft

2016-09-20
2016-01-1987
The future aircraft electrical power system is expected to be more efficient, safer, simpler in servicing and easier in maintenance. As a result, many existing hydraulic and pneumatic power driven systems are being replaced by their electrical counterparts. This trend is known as a move towards the More-Electric Aircraft (MEA). As a result, a large number of new electrical loads have been introduced in order to power many primary functions including actuation, de-icing, cabin air-conditioning, and engine start. Therefore electric power generation systems have a key role in supporting this technological trend. Advances in modern power electronics allow the concept of starter/generator (S/G) which enables electrical engine start and power generation using the same electrical machine. This results in substantial improvements in power density and reduced overall weight.
Technical Paper

Demonstration of Transformable Manufacturing Systems through the Evolvable Assembly Systems Project

2019-03-19
2019-01-1363
Evolvable Assembly Systems is a five year UK research council funded project into flexible and reconfigurable manufacturing systems. The principal goal of the research programme has been to define and validate the vision and support architecture, theoretical models, methods and algorithms for Evolvable Assembly Systems as a new platform for open, adaptable, context-aware and cost effective production. The project is now coming to a close; the concepts developed during the project have been implemented on a variety of demonstrators across a number of manufacturing domains including automotive and aerospace assembly. This paper will show the progression of demonstrators and applications as they increase in complexity, specifically focussing on the Future Automated Aerospace Assembly Phase 1 technology demonstrator (FA3D).
Technical Paper

Design Optimization of Modular Permanent Magnet Machine with Triple Three-Phase for Aircraft Starter Generator

2022-03-08
2022-01-0055
Permanent magnet (PM) electrical machine has far-reaching impacts in aviation electrification due to the continuous development in high power density and high efficiency electrical drives. The primary barrier to acceptance of permanent magnet machines for safety-critical starter-generator systems is its low fault-tolerance capability and low reliability (for the conventional designs). This article investigates a modular triple three-phase PM starter-generator comprehensively, including the tradeoff of fault-tolerant topology, optimization design process, analysis of electromagnetic (highlight the post-fault analysis) and thermal behavior, respectively. The triple three-phase segmented topology proposed meet the fault-tolerant requirement along with complete electrical, magnetic, and thermal isolation. There would be cost penalty on the proposed topology, but it gets offset by the ease of manufacturing of coils and their insertion.
Technical Paper

Design and Modeling of a 45kW, Switched Reluctance Starter-Generator for a Regional Jet Application

2014-09-16
2014-01-2158
A 45kW, switched reluctance type, starter-generator, having a 1:4 constant power speed range has been designed as a possible candidate for a regional jet application. In the first section of this paper, a review of the major starter-generator topologies considered for the aerospace application is provided, highlighting the advantages of choosing the Switched reluctance topology for such a safety critical application. Following this, the required torque speed characteristic of the machine, along with the imposed physical constraints, in terms of cooling and outer dimensions, are also detailed. Section III provides a description of the Electromagnetic design, and challenges encountered in meeting both the low speed, peak torque node, at 8000rpm, and the high speed, high power node, at 32000rpm. The induced mechanical stresses in the rotor at such high speeds have also been evaluated and used as a material selection criterion for such a design as presented in section III.
Technical Paper

Design of a Reconfigurable Assembly Cell for Multiple Aerostructures

2016-09-27
2016-01-2105
This paper presents novel development of a reconfigurable assembly cell which assembles multiple aerostructure products. Most aerostructure assembly systems are designed to produce one variant only. For multiple variants, each assembly typically has a dedicated assembly cell, despite most assemblies requiring a process of drilling and fastening to similar tolerances. Assembly systems that produce more than one variant do exist but have long changeover or involve extensive retrofitting. Quick assembly of multiple products using one assembly system offers significant cost savings from reductions in capital expenditure and lead time. Recent trends advocate Reconfigurable Assembly Systems (RAS) as a solution; designed to have exactly the functionality necessary to produce a group of similar components. A state-of-the-art review finds significant benefits in deploying RAS for a group of aerostructures variants.
Technical Paper

Development of a Modelica Library for Electro-Mechanical Actuator System Studies including Fault Scenarios and Losses

2014-09-16
2014-01-2181
This paper presents the initial development of a Modelica Library for Electro-Mechanical Actuator system analysis. At present two main system components are described, these are the Power Electronic Converter and Electric Machine, although further components will be added. These models provide the user with the ability to simulate Electric Machine and Power Electronic Converter systems including physical effects, losses and fault conditions. Established modelling programs such as Saber and MATLAB SimPowerSytems are often unable to provide all the aspects required to accurately simulate real systems in an easy to use, flexible manner. Therefore this paper shows how Modelica has been used to create versatile models able to simulate many practical aspects such as Power Electronic Converter losses and Power Electronic Converter faults, Electric Machine losses and Electric Machine faults.
Technical Paper

Drooping Strategies for Paralleling Sources and their Effect on Electric Power System Stability

2014-09-16
2014-01-2113
Stability is a great concern for the Electrical Power System (EPS) in the More Electric Aircraft (MEA). It is known that tightly controlled power electronic converters and motor drives may behave as constant power loads (CPLs) which may produce oscillations and cause instability. The paper investigates the stability boundaries for dc multi-source EPS under different power sharing strategies. For each possible strategy the corresponding reduced-order models are derived. The impedance criterion is then applied to study the EPS stability margins and investigates how these margins are influenced by different parameters, such as main bus capacitance, generator/converter control dynamics, cabling arrangements etc. These results are also illustrated by the root contours of reduced-order EPS models. Theoretical results achieved in the paper are confirmed by the time-domain simulations.
Journal Article

ERRATUM

2017-10-08
2017-01-2293.01
Journal Article

Emerging Technologies for Use in Aerospace Bonded Assemblies

2013-09-17
2013-01-2134
Several new technologies are now emerging to improve adhesive supply and formulation along with surface treatments that have the potential to offer significant improvements to both surface energy and cleanliness [3]. Additionally, the miniaturisation of laboratory techniques into portable equipment offers potential for online surface energy and chemical analysis measurement for use as quality control measures in a production environment. An overview of newly available technology is given here with several devices studied in further detail. Technologies assessed further in this paper are; portable surface contact angle measurement, ambient pressure plasma cleaning, portable FTIR measurement and adhesive mixing equipment. A number of potential applications are outlined for each device based on the operational technique. The practical aspects of implementation and the perceived technology readiness levels for operation, implementation and results are also given.
Journal Article

Evaluation of Control Methods for Thermal Roll Forming of Aerospace Composite Materials.

2016-09-27
2016-01-2118
With increased demand for composite materials in the aerospace sector there is a requirement for the development of manufacturing processes that enable larger and more complex geometries, whilst ensuring that the functionality and specific properties of the component are maintained. To achieve this, methods such as thermal roll forming are being considered. This method is relatively new to composite forming in the aerospace field, and as such there are currently issues with the formation of part defects during manufacture. Previous work has shown that precise control of the force applied to the composite surface during forming has the potential to prevent the formation of wrinkle defects. In this paper the development of various control strategies that can robustly adapt to different complex geometries are presented and compared within simulated and small scale experimental environments, on varying surface profiles.
Technical Paper

Fixturing and Tooling for Wing Assembly with Reconfigurable Datum System Pickup

2011-10-18
2011-01-2556
The aerospace manufacturing sector is continuously seeking automation due to increased demand for the next generation single-isle aircraft. In order to reduce weight and fuel consumption aircraft manufacturers have increasingly started to use more composites as part of the structure. The manufacture and assembly of composites poses different constraints and challenges compared to the more traditional aircraft build consisting of metal components. In order to overcome these problems and to achieve the desired production rate existing manufacturing technologies have to be improved. New technologies and build concepts have to be developed in order to achieve the rate and ramp up of production and cost saving. This paper investigates how to achieve the rib hole key characteristic (KC) in a composite wing box assembly process. When the rib hole KC is out of tolerances, possibly, the KC can be achieved by imposing it by means of adjustable tooling and fixturing elements.
Technical Paper

Flexapods - Flexible Tooling at SAAB for Building the NEURON Aircraft

2010-09-28
2010-01-1871
Building prototype aircrafts is costly in tooling especially since only one aircraft is being built. Today's most common tooling strategy is to weld together a beam framework. Welded framework solutions have long lead times both in design and manufacturing and once the aircraft is assembled the tool becomes obsolete. Flexible tooling strategy uses non-welded tooling thus it can be changed and re-used for future products. Early version of a new aircraft model is always hampered by frequent changes in its design, which is cumbersome to handle in a welded framework solution. This paper presents a flexible assembly tooling solutions based on Flexapods and BoxJoint. The Flexapods are commercialized reconfigurable tooling units that are manually adjusted injunction with a laser tracker to a final positional accuracy of +/? 0,05 mm absolute accuracy.
X