Refine Your Search

Search Results

Technical Paper

A Parametric Study of Performance Characteristics of Loop Heat Pipes

1999-07-12
1999-01-2006
A parametric study of performance characteristics of a Loop Heat Pipe (LHP) is presented. A mathematical model, based on the steady-state energy conservation equations, is used. The calculations are performed by varying the operation conditions (heat load, sink and ambient temperatures, and elevation) and the LHP design parameters (working fluid, transport length size, external thermal conductance of the condenser and wick properties). The results are illustrated on LHP performance curves (saturation temperature as a function of applied power). All the results are compared with a baseline configuration to analyze the effects of different parameters. Operating limits due to various constraints such as heat transport limit, capillary pressure limit and the vapor pressure limit are discussed.
Technical Paper

A Prototype Capillary Starter Pump Cold Plate

1995-07-01
951567
The start-up of a capillary pumped loop under a fully flooded condition is often difficult. The problem is due to the presence of a high superheat at the onset of nucleate boiling, and the associated large pressure spike that results in possible vapor penetration through the wick. To overcome the start-up difficulty, a capillary starter pump has been developed. The starter pump is similar to the traditional evaporator pump except for a bayonet tube that is connected directly from the reservoir to the inside of the pump. Such an evaporator design is selfpriming since all displaced liquid must pass through the pump. The starter pump can replace the traditional capillary pump to provide capillary pumping for heat transport. It can further be integrated into a cold plate to receive heat from distributed sources such as spacecraft instruments. Isothermalization of the cold plate can be accomplished by incorporating heat pipes into the cold plate.
Technical Paper

Active Control of the Operating Temperature in a Loop Heat Pipe with Two Evaporators and Two Condensers

2001-07-09
2001-01-2188
This paper describes a test program on active control of the operating temperature in a loop heat pipe (LHP) with two evaporators and two condensers. Test results shoe that when the CCs were not actively controlled, the loop operating temperature was a function of the total heat load, heat load distribution among evaporators, condenser temperature and ambient temperature. Because of the many variables involved, the operating temperature also showed more hystereses than an LHP with a single evaporator. Tight operating temperature control can be achieved by controlling the compensation chambers (CCs) at a desired set point temperature. Temperature control was achieved by maintaining one or both CCs at the desired set point through cold biasing and external heating. Tests performed included start-up, power cycle, sink temperature cycle, CC temperature cycle, and capillary limit.
Technical Paper

An Experimental Study of the Operating Temperature in a Loop Heat Pipe with Two Evaporators and Two Condensers

2001-07-09
2001-01-2189
This paper presents a comprehensive experimental study of the loop operating temperature in a loop heat pipe (LHP) which has two parallel evaporators and two parallel condensers. In a single evaporator LHP, it is well known that the loop operating temperature is a function of the heat load, the sink temperature and the ambient temperature. The present study focuses on the stability of the loop operating temperature and parameters that affects the loop operation. Tests results show that the loop operating temperature is a function of the total system heat load, sink temperature, ambient temperature, and heat load distribution between the two evaporators. Under most conditions, only one compensation chamber (CC) contains two-phase fluid and controls the loop operating temperature, and the other CC is completely filled with liquid. Moreover, as the test condition changes, control of the loop operating temperature often shifted from one CC to another.
Technical Paper

An Improved High Power Hybrid capillary pumped loop

1989-07-01
891566
The High-Power Spacecraft Thermal Management (HPSTM) system was modified and upgraded to facilitate improved performance testing. Modifications to the system included augmenting the heat dissipation capacity of the condenser sink for steady-state high power operation, adding more pressure transducers to monitor pressure drops in various components of the system, installing pressure contact thermocouples on the evaporators to measure the heating surface temperature, providing a coolant loop to one of the evaporator plates for heat load sharing operation, installing a load cell on the reservoir to monitor transient fluid flows, and re-orienting the reservoir to reduce the effects of compressed vapor during transient operations. The system demonstrated a steady, continuous operation at a power input of 20 kW for 10 hours in the capillary mode. Test results also showed about 33% less variation of the reservoir set point temperature during power transients.
Technical Paper

Capillary Limit in a Loop Heat Pipe with Dual Evaporators

2002-07-15
2002-01-2503
This paper describes a study on the capillary limit of a loop heat pipe (LHP) with two evaporators and two condensers. Both theoretical analysis and experimental investigation are performed. Experimental tests conducted include heat load to one evaporator only, even heat loads to both evaporators, and uneven heat loads to both evaporators. Test results show that after the capillary limit is exceeded, vapor will penetrate through the wick of the weaker evaporator, and the compensation chamber (CC) of that evaporator will control the loop operating temperature regardless of which CC has been in control prior to the event. Because the evaporator can tolerate vapor bubbles, the loop can continue to work after vapor penetration. As the loop operating temperature increases, the system pressure drop actually decreases due to a decrease in liquid and vapor viscosities. Thus, the loop may reach a new steady state at a higher operating temperature after vapor penetration.
Technical Paper

Capillary Limit in a Loop Heat Pipe with a Single Evaporator

2002-07-15
2002-01-2502
This paper describes a study on the capillary limit of a loop heat pipe (LHP) at low powers. The slow thermal response of the loop at low powers makes it possible to observe interactions among various components after the capillary limit is exceeded. The capillary limit at low powers is achieved by imposing an additional pressure drop on the vapor line through the use of a metering valve. A differential pressure transducer is also used to measure the pressure drop across the evaporator and the compensation chamber (CC). Test results show that when the capillary limit is exceeded, vapor will penetrate the primary wick, resulting in an increase of the CC temperature. Because the evaporator can tolerate vapor bubbles, the LHP will continue to function and may reach a new steady state at a higher operating temperature. Thus, the LHP will exhibit a graceful degradation in performance rather than a complete failure.
Technical Paper

Design Evolution of the Capillary Pumped Loop (CAPL 2) Flight Experiment

1996-07-01
961431
The Capillary Pumped Loop Flight Experiment (CAPL 2) employs a passive two-phase thermal control system that uses the latent heat of vaporization of ammonia to transfer heat over long distances. CAPL was designed as a prototype of the Earth Observing System (EOS) instrument thermal control systems. The purpose of the mission was to provide validation of the system performance in microgravity, prior to implementation on EOS. CAPL 1 was flown on STS-60 in February, 1994, with some unexpected results related to gravitational effects on two-phase systems. Start-up difficulties on CAPL 1 led to a redesign of the experiment (CAPL 2) and a reflight on STS-69 in September of 1995. The CAPL 2 flight was extremely successful and the new “starter pump” design is now baselined for the EOS application. This paper emphasizes the design history, the CAPL 2 design, and lessons learned from the CAPL program.
Technical Paper

Development and Applications of the Groove Analysis Program (GAP)

1995-07-01
951554
An IBM Personal Computer (PC) version of the Groove Analysis Program (GAP) was developed to predict the steady state heat transport capability of axially grooved heat pipes for a specified groove geometry and working fluid. In the model, the heat transport capability of an axially grooved heat pipe, usually governed by the capillary limit, is determined by the numerical solution of the governing equation for momentum conservation with the appropriate boundary conditions. This paper discusses the theory behind the development of the GAP model. It also presents many useful capabilities of the model. Furthermore, correlations of flight test performance data using GAP are presented and discussed.
Technical Paper

Effects of Gravity on Start-up and Heat Load Sharing of a Miniature Loop Heat Pipe

2007-07-09
2007-01-3234
This paper describes an experimental study on effects of gravity on the start-up and heat load sharing of a miniature loop heat pipe (MLHP) with two evaporators and two condensers. Each evaporator has an outer diameter of 9 mm and has its own integral compensation chamber (CC). For this experimental study, the MLHP was placed under five different configurations where the relative elevation and tilt among loop components were varied. The four well-known initial conditions between the evaporator and CC prior to the LHP start-up were created through combinations of: 1) the test configuration; 2) the method of pre-conditioning the loop prior to start-up, and 3) the heat load distribution between the evaporators. Effects of gravity on start-up transients and heat load sharing were clearly seen under otherwise the same heat load distribution and sink temperatures.
Technical Paper

Flight Testing of a Cryogenic Capillary Pumped Loop

1999-08-02
1999-01-2627
This paper describes the flight test results of the fifth generation cryogenic capillary pumped loop (CCPL-5) which flew on the Space Shuttle STS-95 in October of 1998 as part of the CRYOTSU Flight Experiment. This flight was the first in-space demonstration of the CCPL, a lightweight heat transport and thermal switching device for future integrated cryogenic bus systems. The CCPL-5 utilized nitrogen as the working fluid and operated between 75K and 110K. Flight results indicated excellent performance of the CCPL-5 in a micro-gravity environment. The CCPL could start from a supercritical condition in all tests, and the reservoir set point temperature controlled the loop operating temperature regardless of changes in the heat load and/or the sink temperature. In addition, the loop demonstrated successful operation with heat loads ranging from 0.5W to 3W, as well as with parasitic heat loads alone.
Technical Paper

Flight Testing of the Capillary Pumped Loop Flight Experiment

1995-07-01
951566
The Capillary Pumped Loop Flight Experiment (CAPL) employs a passive two-phase thermal control system that uses the latent heat of vaporization of ammonia to transfer heat over long distances. CAPL was designed as a prototype of the Earth Observing System (EOS) instrument thermal control systems. The purpose of the mission was to provide validation of the system performance in micro-gravity, prior to implementation on EOS. CAPL was flown on STS-60 in February, 1994, with some unexpected results related to gravitational effects on two-phase systems. Flight test results and post flight investigations will be addressed, along with a brief description of the experiment design.
Technical Paper

Flow Visualization within a Capillary Evaporator

1993-07-01
932236
A Capillary Pumped Loop (CPL) is an advanced two-phase heat transport device which utilizes capillary forces developed within porous wicks to move a working fluid. The advantage this system has over conventional thermal management systems is its ability to transfer large heat loads over long distances at a controlled temperature. Extensive ground testing and two flight experiments have been performed over the past decade which have demonstrated the potential of the CPL as a reliable and versatile thermal control system for space applications. While the performance of CPL's as “black boxes” is now well understood, the internal thermo-fluid dynamics in a CPL are poorly known due to the difficulty of taking internal measurements. In order to visualize transient thermohydraulic processes occurring inside an evaporator, a see-through capillary evaporator was built and tested at NASA's Goddard Space Flight Center.
Technical Paper

Ground Tests of Capillary Pumped Loop (CAPL 3) Flight Experiment

1998-07-13
981812
The success of CAPL 2 flight experiment has stirred many interests in using capillary pumped loop (CPL) devices for spacecraft thermal control. With only one evaporator in the loop, CAPL 2 was considered a point design for the Earth Observing System (EOS-AM). To realize the full benefits of CPLs, a reliable system with multiple evaporators must be developed and successfully demonstrated in space. The Capillary Pumped Loop (CAPL 3) Flight Experiment was designed to flight demonstrate a multiple evaporator CPL in a space environment. New hardware and concepts were developed for CAPL 3 to enable reliable start-up, constant conductance operation, and heat load sharing. A rigorous ground test program was developed and extensive characterization tests were conducted. All performance requirements were met, and the loop demonstrated very reliable operation.
Technical Paper

Heat Load Sharing in a Capillary Pumped Loop With Multiple Evaporators and Multiple Condensers

2005-07-11
2005-01-2881
This paper describes the heat load sharing function among multiple parallel evaporators in a capillary pumped loop (CPL). In the normal mode of operation, the evaporators cool the instruments by absorbing the waste heat. When an instrument is turned off, the attached evaporator can keep it warm by receiving heat from other evaporators serving the operating instruments. This is referred to as heat load sharing. A theoretical basis of heat load sharing is given first. The fact that the wicks in the powered evaporators will develop capillary pressure to force the generated vapor to flow to cold locations where the pressure is lower leads to the conclusion that heat load sharing is an inherent function of a CPL with multiple evaporators. Heat load sharing has been verified with many CPLs in ground tests. Experimental results of the Capillary Pumped Loop 3 (CAPL 3) Flight Experiment are presented in this paper. Factors that affect the amount of heat being shared are discussed.
Technical Paper

High Frequency Low Amplitude Temperature Oscillations in Loop Heat Pipe Operation

2003-07-07
2003-01-2387
The operating temperature of a loop heat pipe (LHP) with a single evaporator is governed by the compensation chamber (CC) temperature, which in turn is a function of the evaporator power, condenser sink temperature, and ambient temperature. As the operating condition changes, the CC temperature will also change during the transient but eventually reach a new steady temperature. Under certain conditions, however, the LHP never really reaches a true steady state, but instead displays an oscillatory behavior. This paper presents a study on the oscillation of the loop operating temperature with amplitudes on the order of 1 Kelvin and periods on the order seconds to minutes. The source of the high frequency temperature oscillation is the fast movement of the vapor front in the condenser section, which usually occurs when the vapor front is near the condenser inlet or the condenser outlet.
Technical Paper

Hydrodynamic Aspects of Capillary Pumped Loops

1996-07-01
961435
The the past, the design of a Capillary Pumped Loop involved mainly on the thermodynamics and heat transfer aspects of the system. The fluid flow dynamics of the working fluid were deemed benign to the system performance. Recently theoretical and experimental studies have revealed several mechanisms that led to the deprime of the capillary pumps. These mechanisms were all related to the dynamics of the fluid movement inside the loop.
Technical Paper

Hydrogen Advanced Loop Heat Pipe

2007-07-09
2007-01-3194
Passive cooling transport in the cryogenic temperature regime still remains a challenging task since problems regarding parasitic heat gains from the surrounding have not been resolved satisfactorily. A recently-introduced concept of Advanced Loop Heat Pipe (or ALHP) had demonstrated an ability to manage “excessive” vapor generation in the compensation chamber. Nitrogen and Neon were successfully utilized as the working fluids to provide cryocooling transports in the temperature range of 80-120K and 30-40K, respectively. A Hydrogen ALHP in 2004 became the first capillary-pumped system to operate in the 20-30K range. This paper will present the ALHP technology in general and the detailed description of the research program/test results in particular.
Technical Paper

Investigation of Low Power Operation in a Loop Heat Pipe

2001-07-09
2001-01-2192
This paper presents test results of an experimental study of low power operation in a loop heat pipe. The main objective was to demonstrate how changes in the vapor void fraction inside the evaporator core would affect the loop behavior. The fluid inventory and the relative tilt between the evaporator and the compensation chamber were varied so as to create different vapor void fractions in the evaporator core. The effect on the loop start-up, operating temperature, and capillary limit was investigated. Test results indicate that the vapor void fraction inside the evaporator core is the single most important factor in determining the loop operation at low powers.
Technical Paper

Loop Heat Pipe Operating Temperature Dependence on Liquid Line Return Temperature

2004-07-19
2004-01-2506
A Loop Heat Pipe (LHP) is a passive two-phase heat transfer device developed and successfully employed to cool spacecraft (satellite) electronics. The intrinsic benefits of this technology (lightweight, small volume, high thermal conductance) make it an attractive potential solution to many problems in ground vehicle thermal management. As most published LHP research has focused on cooling orbiting spacecraft components, there is little knowledge of how LHPs perform under the temperature extremes (−40°C to 40°C) and diurnal/seasonal fluctuations anticipated with terrestrial applications. Ambient temperature extremes mandate consideration of transport line heat exchange with the surroundings (parasitic losses/gains). This paper presents results from an experimental investigation of liquid line return temperature impact on system performance for sink temperatures from −30°C to 40°C and evaporator loads up to 700 Watts.
X