Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

10 Years of STOL - The Twin Otter's First Decade

1975-02-01
750596
The Twin Otter was designed as a utility bushplane for operation in the Canadian north. While it has fulfilled that role, it has also been widely adopted for use in urban commuter services which do not demand its STOL and rough field capabilities. Now, after 10 years, these commuter services are widening in scope to the point where these virtues, hitherto unused, are becoming significant. The Twin Otter, by its continued presence over this decade, has helped mould the STOL services promised for the next.
Journal Article

11 Reasons to Use Automated Metrology

2019-03-19
2019-01-1369
Aerospace structures manufacturers find themselves frequently engaged in large-scale 3D metrology operations, conducting precision measurements over a volume expressed in meters or tens of meters. Such measurements are often done by metrologists or other measurement experts and may be done in a somewhat ad-hoc fashion, i.e., executed in the most appropriate method according to the lights of the individual conducting the measurement. This approach is certainly flexible but there are arguments for invoking a more rigorous process. Production processes, in particular, demand an automated process for all such “routine” measurements. Automated metrology offers a number of advantages including enabling data configuration management, de-skilling of operation, real time input data error checking, enforcement of standards, consistent process execution and automated data archiving. It also reduces training, setup time, data manipulation and analysis time and improves reporting.
Technical Paper

11 Rules of Design for Manufacturing when Producing Pre-Impregnated Carbon Fiber-Reinforced Plastic Components - an Application at SAAB Aerostructures

2016-09-27
2016-01-2124
Carbon fiber-reinforced plastic (CFRP) is one of the most commonly used materials in the aerospace industry today. CFRP in pre-impregnated form is an anisotropic material whose properties can be controlled to a high level by the designer. Sometimes, these properties make the material hard to predict with regards to how the geometry affects manufacturing aspects. This paper describes eleven design rules originating from different guidelines that describe geometrical design choices and deals with manufacturability problems that are connected to them, why they are connected and how they can be minimized or avoided. Examples of design choices dealt with in the rules include double curvature shapes, assembly of uncured CFRP components and access for non-destructive testing (NDT). To verify the technical content and ensure practicability, the rules were developed by, inter alia, studying literature and performing case studies at SAAB Aerostructures.
Technical Paper

250 °C SiC Power Module Package Design

2008-11-11
2008-01-2892
In order to take full advantage of SiC, a high temperature package for power module using SiC devices was designed, developed, fabricated and tested. The details of the material selection and fabrication process are described. High temperature reliability test and power test shows that the package presented in this paper can perform well at the high junction temperature.
Technical Paper

3D Computational Methodology for Bleed Air Ice Protection System Parametric Analysis

2015-06-15
2015-01-2109
A 3D computer model named AIPAC (Aircraft Ice Protection Analysis Code) suitable for thermal ice protection system parametric studies has been developed. It was derived from HASPAC, which is a 2D anti-icing model developed at Wichita State University in 2010. AIPAC is based on the finite volumes method and, similarly to HASPAC, combines a commercial Navier-Stokes flow solver with a Messinger model based thermodynamic analysis that applies internal and external flow heat transfer coefficients, pressure distribution, wall shear stress and water catch to compute wing leading edge skin temperatures, thin water flow distribution, and the location, extent and rate of icing. In addition, AIPAC was built using a transient formulation for the airfoil wall and with the capability of extruding a 3D surface grid into a volumetric grid so that a layer of ice can be added to the computational domain.
Technical Paper

3D Image Metrology for Lean Manufacturing

1999-06-05
1999-01-2290
The need to improve quality while reducing cost in aerospace manufacturing is requiring new manufacturing methods and processes. Advanced technologies, such as 3D Image Metrology, offer great potential to lean manufacturing, if properly integrated into the production process. Over the last years 3D Image Metrology has developed a level of performance, which make it ideally suited for this purpose. These capabilities include the automatic in-process inspection of tools and parts before machining, machine control for highly accurate positioning during the machining operation, and in-process inspection during machining. This offers jig-less assembly, lower inventory, faster part throughput, and many more advantages.
Technical Paper

3D Re-Engineering: A Comprehensive Process for Solving Production Assembly Fit Problems

1998-06-02
981835
Dimensional Management (DM) is a methodology to predict and control the impact of variation on assembly from, fit, and function. Application of Dimensional Management tools and other modeling and simulation techniques are combined in a process called 3D Re-Engineering for application to existing production designs. Analytical techniques for predicting the impact of variation on assembly fit, and corresponding methods for controlling variation are presented, as used in a production environment for root cause corrective action on existing assembly fit problems. Assembly variation analysis is typically performed early in the product development phases, by coordinating datums, assembly sequences, assembly methods, and detail part tolerances across the product development team.
Journal Article

4H-SiC VJFET Based Normally-off Cascode Switches for 300°C Electronic Applications

2008-11-11
2008-01-2883
Vertical-Junction-Field-Effect-Transistors (VJFETs) are currently the most mature SiC devices for high power/temperature switching. High-voltage VJFETs are typically designed normally-on to ensure voltage control operation at high current-gain. However, to exploit the high voltage/temperature capabilities of VJFETs in a normally-off high-current voltage-controlled switch, high-voltage normally-on and low-voltage normally-off VJFETs were connected in the cascode configuration. In this paper, we review the high temperature DC characteristics of VJFETs and 1200 V normally-off cascode switches. The measured parameter shifts in the 25°C to 300°C temperature range are in excellent agreement with theory, confirming fabrication of robust SiC VJFETs and cascode switches.
Technical Paper

5-Axis Flex Track Drilling Systems on Complex Contours: Solutions for Position Control

2013-09-17
2013-01-2224
Previous Flex Track drilling systems move along two parallel tracks that conform to the contour of a work piece surface. Until recently, applications have been limited to relatively simple surfaces such as the cylindrical mid-body fuselage join of a commercial aircraft. Recent developments in the state of the art have introduced the 5-axis variant which is capable of precision drilling on complex contours. This paper presents solutions to two positioning challenges associated with this added functionality: the ability to align the spindle axis normal to an angled drilling surface while maintaining accuracy in tool-point position, the ability to maintain synced motion between dual drives on complex track profiles.
Technical Paper

5-Axis Flex Track System

2012-09-10
2012-01-1859
Flex Track Systems are seeing increased usage in aerospace applications for joining large assemblies, such as fuselage sections. Previous systems were limited to work pieces that allowed the tracks to follow a gentle radius of curvature, limiting the locations where the system could be used. This paper describes a new 5-Axis Flex Track System developed to expand the usage of the systems, allowing them to process work pieces containing complex and irregular contours. Processing complex contours is accomplished through the addition of A and B axes providing normalization in multiple directions. These new systems are configured with the latest multi-function process capabilities allowing drilling, hole quality measurement, and temporary or permanent fastener installation.
Technical Paper

6DOF Metrology-integrated Robot Control

2003-09-08
2003-01-2961
This paper describes ongoing research into Metrology-integrated robot control. The research is a part of an ongoing EU funded aircraft industry project – ADFAST*. The ADFAST project tries to implement the use of industrial robots in low-volume production, high-demand-on-accuracy operations and for dynamic force compensation. To detect and compensate deflection in industrial robots during a process, the robot uses a metrology system. The metrology system supervises the tool center point of the robot as it executes its processes. Leica has recently released a new metrology system; the LTD800, which measures distances with laser interferometry and can simultaneously measure orientation of targets, through photogrammetry, using an additional camera on top of the measuring unit. This paper will describe theory and results from tests performed on integrating the LTD800 with the robot.
Technical Paper

737–800 Winglet Integration

2001-09-11
2001-01-2989
A joint venture called Aviation Partners Boeing successfully integrated winglets into the Next-Generation 737–800 by retaining performance improvements with minimal weight penalty on the existing 737 wing design. Program challenges included developing both retrofit and production configurations using a common winglet design, causing minimal impact on all customers, and causing minimal disruption to the 737 production process. Winglet benefits along with improved performance include reduced engine wear and enhanced visual appeal.
Technical Paper

777 Automated Spar Assembly Tool - Second Generation

1995-09-01
952172
The Automated Spar Assembly Tool (ASAT II) at the Everett, Washington, 777 Boeing manufacturing facility could be the largest automated fastening cell in the commercial aircraft industry. Based on the success of the ASAT I, Boeing's 767 spar assembly tool, the 285-foot long ASAT II cell was needed to accurately position and fasten the major spar components (chords and web), then locate and fasten over 100 components (ribposts and stiffeners) to assemble the 777 forward and rear wing spars. From its inception in 1990 to the first drilled hole in January 1993 and through two years of spar production, the more advanced ASAT II has proven to be a greater success than even its 767 ASAT I predecessor. This massive automated fastening system consistently provides accurate hole preparation, inspection, and installation of three fastener types ranging from 3/16 inches to 7/16 inches in diameter.
Technical Paper

777 Wing Fastener Machine Training Simulator

1993-09-01
931761
Wing panels for Boeing's new 777 airplane are assembled using fastening machines called Wing Fastener Systems (WFS). Compared to the wing riveting machines currently used to squeeze rivets for other airplane models, the 777 WFS provides significantly more features in that it also installs two part fasteners, collects process data for Statistical Process Control analysis, plus other functions. Historically, new operators for wing riveting machines have needed six months of on-the-job training to achieve basic qualification. Because of the increased functionality of the 777 WFS, an eight to nine month O.J.T. requirement was anticipated. Training requirements were further compounded by our need for up to thirty qualified operators in a relatively short time frame and a maintenance staff thoroughly trained in the new control architecture. Boeing's response to this challenge was to use simulation methods similar to those used to train pilots for our customer airlines.
Technical Paper

777X Control Surface Assembly Using Advanced Robotic Automation

2017-09-19
2017-01-2092
Fabrication and assembly of the majority of control surfaces for Boeing’s 777X airplane is completed at the Boeing Defense, Space and Security (BDS) site in St. Louis, Missouri. The former 777 airplane has been revamped to compete with affordability goals and contentious markets requiring cost-effective production technologies with high maturity and reliability. With tens of thousands of fasteners per shipset, the tasks of drilling, countersinking, hole inspection, and temporary fastener installation are automated. Additionally and wherever possible, blueprint fasteners are automatically installed. Initial production is supported by four (4) Electroimpact robotic systems embedded into a pulse-line production system requiring strategic processing and safeguarding solutions to manage several key layout, build and product flow constraints.
Technical Paper

A -183°C Cryogenic Freezer for the International Space Station

2003-07-07
2003-01-2525
In the course of CRYOSYSTEM phase B (development phase) financed by the European Space Agency, AIR LIQUIDE (France) and Astrium Space Infrastructure (Germany) have developed an optimized design of a −183°C freezer to be used on board the International Space Station for the freezing and storage of biological samples. The CRYOSYSTEM facility consists of the following main elements: - the CRYORACK, an outfitted standard payload rack (ISPR) accommodating up to three identical Vial Freezers - the Vial Freezer, a dewar vessel capable of fast and ultra-rapid freezing, and storing up to approximately 900 vials below −183°C; the dewar is cooled by a Stirling machine producing > 6 W at 90 K. The Vial Freezer is operational while accommodated in the CRYORACK or attached to the Life Science Glovebox (LSG). One CRYORACK will remain permanently on-orbit for several years while four Vial Freezers and two additional CRYORACKs support the cyclic upload/download of samples.
Technical Paper

A -183°C Cryogenic Freezer for the International Space Station

2000-07-10
2000-01-2325
In the frame of the CRYOSYSTEM A-phase study financed by the European Space Agency, AIR LIQUIDE (France) and ORBITAL HYDRAULIC-BREMEN (Germany) have been studying a -183°C freezer to be used on-board the International Space Station for freezing and storing biological samples.
Technical Paper

A Baseline Design for the Space Station Habitat

1988-07-01
881119
A baseline design has been selected for the Space Station Habitat (HAB) element. The HAB provides the primary living space to support man's permanent presence in space. The HAB element is designed to provide an environment that maximizes safety and human productivity. This paper outlines some of the current design features including the common core elements and the man-systems hardware. The HAB is arranged in three areas based on crew activity and acoustical considerations. The first area is the quiet zone, which contains the crew quarters. The second area is a buffer zone for noise suppression, where the stowage, medical facilities, and personal hygiene facilities are located. The third area is the active zone which contains the galley/wardroom, laundry and exercise facilities. Each of these three areas will be discussed together with the applicable requirements, the common utility elements, and the man-systems hardware furnishings.
Technical Paper

A Building for Testing European Rovers and Landers under Simulated Surface Conditions: Part 1 - Design and Phasing

2008-06-29
2008-01-2021
Europe has embarked on a new programme of space exploration involving the development of rover, lander and probe missions to visit planets, moons and near Earth objects (NEOs) throughout the Solar System. Rovers and landers will require testing under simulated planetary, and NEO conditions to ensure their ability to land on and traverse the alien surfaces. ESA has begun work on a building project that will provide an enclosed and controlled environment for testing rover and lander functions such as landing, mobility, navigation and soil sampling. The facility will first support the European ExoMars mission due for launch in 2013. This mission will deliver a robotic rover to the Martian surface. This paper, the first of several on the project, gives an overview of its design configuration and construction phasing. Future papers will cover its applications and operations.
Technical Paper

A CFD Approach for Predicting 3D Ice Accretion on Aircraft

2011-06-13
2011-38-0044
In this work, a newly developed iced-aircraft modeling tool is applied to wings, engine inlets, and helicopter rotors. The tool is based on a multiscale-physics, unstructured finite-volume CFD approach and is applicable to general purpose aircraft icing applications. The present approach combines an Eulerian-based droplet-trajectory solver that is loosely coupled, in a time-accurate manner, to a surface-film and ice-evolution model. The goal of the model is to improve the fidelity of ice accretion modeling on dynamic geometries and for three-dimensional ice shapes typical of helicopter rotors. The numerical formulation is discussed and presented alongside 2D and 3D static validation cases, and dynamic helicopter rotors. The present results display good validation for predicting ice shape on a variety of geometries, and a strong initial capability of modeling ice forming on helicopters in forward flight.
X