Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

727, B-52 Retrofit with PW2037…. Meeting Today's Requirements

1982-02-01
821443
Offering aircraft fuel efficiency improvements of 30 to 40% over the powerplants it will replace, PW2037 retrofit in the 727-200 Advanced and B-52 aircraft is attracting heightened interest. A comparison of PW2037 technical characteristics with current aircraft powerplants substantiates the improvement potential.The engine installation and modifications necessary for aircraft system compatibility do not impose significant increases in complexity or cost. The resultant improvements in aircraft capability (727 and B-52) and economic viability to airlines (7271 produce aircraft uniquely suited to today's operational requirements and constrained equipment budgets.
Technical Paper

912iS Fuel Injected Aircraft Engine

2012-10-23
2012-32-0049
The 912 engine is a well known 4-cylinder horizontally opposed 4-stroke liquid-/air-cooled aircraft engine. The 912 family has a strong track record: 40 000 engines sold / 25 000 still in operation / 5 million flight hours annually. 88% of all light aircraft OEMs use Rotax engines. The 912iS is an evolution of the Rotax 912ULS carbureted engine. The “i” stands for electronic fuel injection which has been developed according to flight standards, providing a better fuel efficiency over the current 912ULS of more than 20% and in a range of 38% to 70% compared to other competitive engines in the light sport, ultra-light aircraft and the general aviation industry. BRP engineers have incorporated several technology enhancements. The fully redundant digital Engine Control Unit (ECU) offers a computer based electronic diagnostic system which makes it easier to diagnose and service the engine.
Journal Article

A Carbon Intensity Analysis of Hydrogen Fuel Cell Pathways

2021-03-02
2021-01-0047
A hydrogen economy is an increasingly popular solution to lower global carbon dioxide emissions. Previous research has been focused on the economic conditions necessary for hydrogen to be cost competitive, which tends to neglect the effectiveness of greenhouse gas mitigation for the very solutions proposed. The holistic carbon footprint assessment of hydrogen production, distribution, and utilization methods, otherwise known as “well-to-wheels” carbon intensity, is critical to ensure the new hydrogen strategies proposed are effective in reducing global carbon emissions. When looking at these total carbon intensities, however, there is no single clear consensus regarding the pathway forward. When comparing the two fundamental technologies of steam methane reforming and electrolysis, there are different scenarios where either technology has a “greener” outcome.
Technical Paper

A Comparison of Lithium-Ion and Lead-Acid Aircraft Batteries

2008-11-11
2008-01-2875
In recent years, a tremendous interest has spawned towards adapting Lithium-Ion battery technology for aircraft applications. Lithium-Ion technology is already being used in some military aircraft (e.g., the F-22, F-35 and the B-2) and it has also been selected as original equipment for large commercial aircraft (e.g., the Airbus A380 and Boeing B787). The advantages of Lithium-Ion technology over Lead-Acid and Nickel-Cadmium technologies are higher specific energy (Wh/kg) and energy density (Wh/L), and longer cycle life. Saving weight is especially important in aircraft applications, because it can boost fuel economy and increase mission capability. Disadvantages of Lithium-Ion technology include higher initial cost, limited calendar/float life, inferior low temperature performance, and more severe safety hazards. This paper will present a direct comparison of a 24-Volt, 28Ah Lead-Acid and a 24-volt, 28Ah Lithium-Ion aircraft battery.
Technical Paper

A Grand Design of Future Electric Vehicle with Fuel Economy More than 100 Km/Liter

1999-08-02
1999-01-2711
In this study, the authors concluded that a super energy-efficient vehicle (SEEV) with fuel economy more than 100km/liter could be possible with the present technology level. The new environmentally-compatible vehicle was designed to mitigate urban warming, air pollution and CO2 emissions in the urban area. The authors evaluated optimal specifications of the new concept energy-efficient electric vehicle (EV) equipped with flywheel and photovoltaic (PV) cell and also reported the results of the running simulations for the proposed vehicle. The proposed SEEV will be very promising to mitigate urban and global warming, and toconserve fossil fuel consumption.
Technical Paper

A Methodology of Optimizing Steering Geometry for Minimizing Steering Errors

2024-01-16
2024-26-0062
The focus on driver and occupant safety as well as comfort is increasing rapidly while designing commercial vehicles in India. Improvements in the road network have enhanced road transport for commercial vehicles. Apart from the cost of operation and fuel economy, the commercial vehicles must deliver goods within stipulated time. These factors resulted in higher speed of operation for commercial vehicles. The design should not compromise the safety of the vehicle at these higher speeds of operation. The vehicle should obey the driver’s intended direction at all speeds and the response of the vehicle to driver input must be predictable without much larger surprises which can lead to accidents. The commercial vehicles are designed with rigid axle and RCB type steering system. This suspension and steering design combination introduce steering errors when vehicle travel over bump, braked and while cornering.
Technical Paper

A New Lab for Testing Biofiltration for Advanced Life Support

2005-07-11
2005-01-3060
Bioregenerative systems for removal of gaseous contaminants are desired for long-term space missions to reduce the equivalent system mass of the air cleaning system. This paper describes an innovative design of a new biofiltration test lab for investigating the capability of biofiltration process for removal of ersatz multi-component gaseous streams representative of spacecraft contaminants released during long-term space travel. The lab setup allows a total of 24 bioreactors to receive identical inlet waste streams at stable contaminant concentrations via use of permeations ovens, needle valves, precision orifices, etc. A unique set of hardware including a Fourier Transform Infrared (FTIR) spectrometer, and a data acquisition and control system using LabVIEW™ software allows automatic, continuous, and real-time gas monitoring and data collection for the 24 bioreactors. This lab setup allows powerful factorial experimental design.
Technical Paper

A Potential Solution for High-Efficiency Aircraft Powerplants - the Scotch Yoke X-Engine Aero-Diesel

2017-09-19
2017-01-2042
A newly-invented "X"-configuration engine utilizing the Scotch yoke mechanism renders potential for the best power/weight ratio of any piston engine. Due to its inherent space and weight efficiency, low stress levels on critical components and low bearing pressures, this new configuration can be designed for aircraft applications using high-pressure 4-stroke diesel cycle with large numbers of cylinders - as many as 24 or 32 cylinders - to minimize engine weight and cross-sectional area. Given the efficiency advantage of 4-stroke turbo-diesel cycle over turbine engines, a study reveals that diesel X-engines may be a preferable solution to turbine engines for airplanes, helicopters and UAVs up to approximately 60000 lbs max. weight @takeoff. Calculations using existing turbine-powered aircraft as a baseline indicate potential for 35 to 50% lower fuel consumption with no compromise to maximum takeoff weight, payload, range, cruise speed, maximum speed or takeoff power.
Technical Paper

A Study of Sabatier Reactor Operation in Zero “G”

1984-07-01
840936
The Sabatier reactor is an exothermic, heterogeneous catalytic reactor that has the function of reducing carbon dioxide to methane and water vapor. Sabatier reactor operation is affected by gravity through the effects of buoyant forces. The buoyant forces affect the transfer of heat and can be significant in determining the temperatures of the various portions of the reactor. The temperatures then affect the fundamental processes such as the chemical reaction rate. This paper presents the results of zero “G” computer model simulations of Sabatier reactor operation. Groundbase experiments were made for various manned loadings under normal ambient and gravity (l-G) conditions and were correlated with normal gravity simulations. The zero “G” simulations show the reactor will run significantly hotter in a zero “G” environment if cooling air flow is not increased to compensate for the loss of natural convections.
Technical Paper

A Study of the Sebatier-Methanation Reaction

1974-02-01
740933
The kinetics of the Sabatier methanation reaction, the reduction of carbon dioxide with hydrogen to methane and water, was investigated for 58 percent nickel on kieselguhr catalyst and 20 percent ruthenium on alumina catalyst. Differential rate data from an experimental program were correlated with a power function rate equation both for forward and reverse reactions. The kinetic parameters of activation energy, frequency rate constant and reaction order were determined for the rate equation. The values of these parameters were obtained from an Arrhenius plot of the experimental differential rate data. Also the carbon monoxide side reaction effect was measured and included in the correlation of parameters. The reaction was found to fit the rate equation experimentally within the temperature range 421°K, where the reaction effectively begins, to 800°K where the reaction rate drops and departs from the rate equation form.
Technical Paper

A Total Converting and Biosafe Liquefaction Compartment for MELiSSA

2005-07-11
2005-01-3068
The feasibility of a near-complete and biosafe conversion of human- and food waste into biogas was investigated in the context of ESA’s MELiSSA loop (Micro Ecological Life Support System Alternative). The treatment comprises of a series of processes, i.e. a mesophilic lab-scale CSTR (continuously stirred tank reactor), an upflow biofilm reactor, a fibre liquefaction reactor containing the rumen bacterium Fibrobacter succinogenes and a hydrothermolysis system in near-critical water. In the one-stage CSTR, a biogas yield of 75% with a specific biogas production of 0.37 L biogas g-1 added VS (volatile suspended solids) at a HRT (hydraulic retention time) of 15 to 25 days was obtained. When the SRT (solid retention time) was uncoupled from the HRT, and all solids were completely retained in the methane reactor, a more complete biogas conversion was observed at a SRT of above 20 days, corresponding to a 10% increase of degradation on a total COD basis.
Technical Paper

AIR-COOLED ENGINES IN NAVAL AIRCRAFT

1926-01-01
260060
The purpose of the paper is to point out the basic policies which have resulted in the fostering of air-cooled-engine development by the Navy, and to indicate where the development has led. Two roles played by naval aviation are designated “air service” and “air force.” The former term refers to the functions of naval aircraft which are contributory to the ships of the fleets, such as scouting and the control of gun-fire. The latter term refers to the functions which involve the use of aircraft as an integral and component part of the Navy's striking force, such as combat, bombing and torpedo launching. Seven different types of aircraft are required by the Navy for its different purposes, these being airplanes for training, fighting, observation, scouting, torpedoing, bombing, and patrol use.
Journal Article

ANITA Air Monitoring on the International Space Station Part 2: Air Analyses

2008-06-29
2008-01-2043
After the launch to the ISS (International Space Station) with The Space Shuttle flight STS 118 13A.1 on August 9th 2007 and the accommodation in the US lab Destiny, the air quality monitor ANITA (Analysing Interferometer for Ambient Air) has been successfully put into operation. ANITA is a technology demonstrator flight experiment being able to continuously monitor with high time resolution the air conditions within the crewed cabins of the ISS. The system has its origin in a long term ESA technology development programme. The ANITA mission itself is an ESA-NASA cooperative project. ESA is responsible for the provision of the HW, the data acquisition and data evaluation. NASA's responsibilities are launch, accommodation in the US Lab Destiny, operation and data download. The ANITA air analyser is currently calibrated to detect and quantify online and with high time resolution 33 gases simultaneously with down to sub-ppm detection limits.
Technical Paper

AVIATION FUEL ECONOMY AND QUALITY - BROTHERS UNDER THE AIRCRAFT SKIN

1953-01-01
530264
AFTER defining the operating conditions for maximum aircraft fuel economy in terms of fuel/air ratios, spark advance, and engine cooling drag, the authors define the characteristics of aviation gasoline necessary for the attainment of these engine conditions.
Technical Paper

Activities of the Federal Aviation Administration’s Aviation Weather Research Program

1999-04-20
1999-01-1578
Weather is a major cause of aircraft accidents and incidents and the single largest contributor to air traffic system delays. Through improvements in the knowledge of current weather conditions and reliable forecasts, the Federal Aviation Administration (FAA) can improve aviation safety, increase system capacity, and enhance flight planning and fuel efficiency. The FAA has established an Aviation Weather Research (AWR) program to address specific requirements for weather support to aviation by providing the capability to generate more accurate and accessible weather observations, warnings, and forecasts and also by increasing the scientific understanding of atmospheric processes that spawn aviation weather hazards. The goal of AWR is to provide meteorological research that leads to the satisfaction of specific aviation weather requirements.
Technical Paper

Aerodynamic Analysis on under Body Drag and Vehicle Performance of Active Front Spoiler for High CG Vehicles

2019-10-11
2019-28-0025
Vehicle aerodynamic drag reduction is the effective technique to enhance the fuel economy, performance and top speed of a vehicle. Out of the total drag, the underbody drag contributes about 40-50% by the parts like wheel arch, wheel housing, and the wheels. This further increases in the case of vehicles with higher CG. Thus, it seems logical to focus attention on the underbody aerodynamic drag reduction. In this study, an active spoiler is placed towards the front end of the vehicle which will divert the air flow from the front towards the radiator. The active spoiler revolves according to the signals received from the radar sensors placed at the lower end to detect obstacles which will prevent it from damage. The aim of the study is to examine the effect of the air flow diversion on underbody drag. The effect of air flow diversion on fuel consumption, radiator effectiveness and top speed is numerically evaluated.
Technical Paper

Aerodynamic Design Data For a Cruise-Matched High Performance Single Engine Airplane

1981-04-01
810625
Design data are presented for a class of high-performance single-engine business airplanes. The design objectives include a cruise speed of 300 knots, a cruise altitude of 10,700 m (35,000 ft), a cruise payload of six passengers (including crew and baggage), and a no-reserves cruise range of 1300 n.mi. Two unconventional aerodynamic technologies were evaluated: the individual and combined effects of cruise-matched wing loading and of a natural laminar flow airfoil were analyzed. The tradeoff data presented illustrate the ranges of wing geometries, propulsion requirements, airplane weights, and aerodynamic characteristics which are necessary to meet the design objectives. very large design and performance improvements resulted from use of the aerodynamic technologies evaluated. Is is shown that the potential exists for achieving more than 200-percent greater fuel efficiency than is achieved by current airplanes capable of similar cruise speeds, payloads, and ranges.
Technical Paper

Aerodynamic Drag Reduction - from Conceptual Design on a Simplified Generic Model to Full-Scale Road Tests

2015-04-14
2015-01-1543
Road transportation by trucks is the major part of the goods transportations system in the European Union (EU), and there is a need for increased fuel efficiency. While truck manufacturers already spend significant resources in order to reduce the emissions from their vehicles, most truck manufacturers do not control the shape of the trailer and/or swap bodies. These devices are usually manufactured by different companies that cannot consider the overall aerodynamics around the complete vehicle. By use of Computational Fluid Dynamics (CFD) and previous wind tunnel experiments, the flow around a simplified generic tractor-trailer model has been investigated. With better understanding of the flow features around the tractor with attached trailer or swap bodies, an improved design of the trailer and swap body can be achieved, which is the aim for the project.
Journal Article

Aerodynamic Drag of Passenger Cars at Yaw

2015-04-14
2015-01-1559
The aerodynamic drag characteristics of a passenger car are typically defined by a single parameter, the drag coefficient at zero yaw angle. While this has been acceptable in the past, it may not allow a true comparison between vehicles with regard to the impact of drag on performance, especially fuel economy. An alternative measure of aerodynamic drag should take into account the effect of non-zero yaw angles and some proposals have been made in the past, including variations of wind-averaged drag coefficient. For almost all cars the drag increases with yaw, but the increase can vary significantly between vehicles. In this paper the effect of various parameters on the drag rise with yaw are considered for a range of different vehicle types. The increase of drag with yaw is shown to be an essentially induced drag, which is strongly dependent on both side force and lift. Shape factors which influence the sensitivity of drag with yaw are discussed.
Technical Paper

Aerodynamic Performance Prediction of a Car using GEKO Turbulence Model and Application of Gradient Based Optimisation for Improving Aerodynamic Drag

2021-09-22
2021-26-0353
In the present scenario, wherein the cost of transportation is continuously increasing, achieving optimum fuel efficiency is key area of focus for many Automotive OEMs. Aerodynamic drag is prominent form of resistance any vehicle encounters while it is in motion, and this particularly increases at higher speeds and exceeds all other forms of resistive forces acting on vehicle. Hence, predicting and improving aerodynamic performance of a car forms a very important aspect in overall product design cycle. Engineers and designers around the world try different methods for predicting and improving the aerodynamics of a car, including rigorous wind tunnel & test track testing. In current paper, we will be discussing a novel approach to predict and improve the aerodynamic drag for a test vehicle (Ford-Ka) model.
X