Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

10 KWe Dual-Mode Space Nuclear Power System for Military and Scientific Applications

1992-08-03
929072
A 10 KWe dual-mode space power system concept has been identified which is based on INEL's Small Externally-fueled Heat Pipe Thermionic Reactor (SEHPTR) concept. This power system will enhance user capabilities by providing reliable electric power and by providing two propulsion systems; electric power for an arc-jet electric propulsion system and direct thrust by heating hydrogen propellant inside the reactor. The low thrust electric thrusters allow efficient station keeping and long-term maneuvering. The direct thrust capability can provide tens of pounds of thrust at a specific impulse of around 730 seconds for maneuvers that must be performed more rapidly. The direct thrust allows the nuclear power system to move a payload from Low Earth Orbit (LEO) to Geosynchronous Earth Orbit (GEO) in less than one month using approximately half the propellant of a cryogenic chemical stage.
Journal Article

2-Stroke High Speed Diesel Engines for Light Aircraft

2011-09-11
2011-24-0089
The paper describes a numerical study, supported by experiments, on light aircraft 2-Stroke Direct Injected Diesel engines, typically rated up to 110 kW (corresponding to about 150 imperial HP). The engines must be as light as possible and they are to be directly coupled to the propeller, without reduction drive. The ensuing main design constraints are: i) in-cylinder peak pressure as low as possible (typically, no more than 120 bar); ii) maximum rotational speed limited to 2600 rpm. As far as exhaust emissions are concerned, piston aircraft engines remain unregulated but lack of visible smoke is a customer requirement, so that a value of 1 is assumed as maximum Smoke number. For the reasons clarified in the paper, only three cylinder in line engines are investigated. Reference is made to two types of scavenging and combustion systems, designed by the authors with the assistance of state-of-the-art CFD tools and described in detail in a parallel paper.
Journal Article

500 Hours Endurance Test on Biodiesel Running a Euro IV Engine

2010-10-25
2010-01-2270
A 500 hours endurance test was performed with a heavy-duty engine (Euro IV); MAN type D 0836 LFL 51 equipped with a PM-Kat®. As fuel 100% biodiesel was used that met the European specification EN 14214. The 500 hours endurance test included both the European stationary and transient cycle (ESC and ETC) as well as longer stationary phases. During the test, regulated emissions (carbon monoxide, nitrogen oxides, hydrocarbons and particulate matter), the particle number distribution and the aldehydes emission were continuously measured. For comparison, tests with fossil diesel fuel were performed before and after the endurance test. During the endurance test, the engine was failure-free for 500 hours with the biogenic fuel. There were almost no differences in specific fuel consumption during the test, but the average exhaust gas temperature increased by about 15°C over the time. Emissions changed only slightly during the test.
Technical Paper

727, B-52 Retrofit with PW2037…. Meeting Today's Requirements

1982-02-01
821443
Offering aircraft fuel efficiency improvements of 30 to 40% over the powerplants it will replace, PW2037 retrofit in the 727-200 Advanced and B-52 aircraft is attracting heightened interest. A comparison of PW2037 technical characteristics with current aircraft powerplants substantiates the improvement potential.The engine installation and modifications necessary for aircraft system compatibility do not impose significant increases in complexity or cost. The resultant improvements in aircraft capability (727 and B-52) and economic viability to airlines (7271 produce aircraft uniquely suited to today's operational requirements and constrained equipment budgets.
Technical Paper

912iS Fuel Injected Aircraft Engine

2012-10-23
2012-32-0049
The 912 engine is a well known 4-cylinder horizontally opposed 4-stroke liquid-/air-cooled aircraft engine. The 912 family has a strong track record: 40 000 engines sold / 25 000 still in operation / 5 million flight hours annually. 88% of all light aircraft OEMs use Rotax engines. The 912iS is an evolution of the Rotax 912ULS carbureted engine. The “i” stands for electronic fuel injection which has been developed according to flight standards, providing a better fuel efficiency over the current 912ULS of more than 20% and in a range of 38% to 70% compared to other competitive engines in the light sport, ultra-light aircraft and the general aviation industry. BRP engineers have incorporated several technology enhancements. The fully redundant digital Engine Control Unit (ECU) offers a computer based electronic diagnostic system which makes it easier to diagnose and service the engine.
Journal Article

A Carbon Intensity Analysis of Hydrogen Fuel Cell Pathways

2021-03-02
2021-01-0047
A hydrogen economy is an increasingly popular solution to lower global carbon dioxide emissions. Previous research has been focused on the economic conditions necessary for hydrogen to be cost competitive, which tends to neglect the effectiveness of greenhouse gas mitigation for the very solutions proposed. The holistic carbon footprint assessment of hydrogen production, distribution, and utilization methods, otherwise known as “well-to-wheels” carbon intensity, is critical to ensure the new hydrogen strategies proposed are effective in reducing global carbon emissions. When looking at these total carbon intensities, however, there is no single clear consensus regarding the pathway forward. When comparing the two fundamental technologies of steam methane reforming and electrolysis, there are different scenarios where either technology has a “greener” outcome.
Technical Paper

A Combustion Products Analyzer for Contingency Use During Thermodegradation Events on Spacecraft

1991-07-01
911479
As mission length and the number and complexity of payload experiments increase, so does the probability of thermodegradation contingencies (e.g. fire, chemical release and/or smoke from overheated components or burning materials), which could affect mission success. When a thermodegradation event occurs on board a spacecraft, potentially hazardous levels of toxic gases could be released into the internal atmosphere. Experiences on board the Space Shuttle have clearly demonstrated the possibility of small thermodegradation events occurring during even relatively short missions. This paper will describe the Combustion Products Analyzer (CPA), which is being developed under the direction of the Toxicology Laboratory at Johnson Space Center to provide necessary data on air quality in the Shuttle following a thermodegradation incident.
Technical Paper

A Comparison of Lithium-Ion and Lead-Acid Aircraft Batteries

2008-11-11
2008-01-2875
In recent years, a tremendous interest has spawned towards adapting Lithium-Ion battery technology for aircraft applications. Lithium-Ion technology is already being used in some military aircraft (e.g., the F-22, F-35 and the B-2) and it has also been selected as original equipment for large commercial aircraft (e.g., the Airbus A380 and Boeing B787). The advantages of Lithium-Ion technology over Lead-Acid and Nickel-Cadmium technologies are higher specific energy (Wh/kg) and energy density (Wh/L), and longer cycle life. Saving weight is especially important in aircraft applications, because it can boost fuel economy and increase mission capability. Disadvantages of Lithium-Ion technology include higher initial cost, limited calendar/float life, inferior low temperature performance, and more severe safety hazards. This paper will present a direct comparison of a 24-Volt, 28Ah Lead-Acid and a 24-volt, 28Ah Lithium-Ion aircraft battery.
Technical Paper

A Comparison of the Radiation Environments in Deep Space

2007-07-09
2007-01-3114
Both humans and onboard radiosensitive systems (electronics, materials, payloads and experiments) are exposed to the deleterious effects of the harsh space radiations found in the space environment. The purpose of this paper is to present the space radiation environment extended to deep space based on environment models for the moon, Mars, Jupiter, and Saturn and compare these radiation environments with the earth's radiation environment, which is used as a comparative baseline. The space radiation environment consists of high-energy protons and electrons that are magnetically “trapped” in planetary bodies that have an intrinsic magnetic field; this is the case for earth, Jupiter, and Saturn (the moon and Mars do not have a magnetic field). For the earth this region is called the “Van Allen belts,” and models of both the trapped protons (AP-8 model) and electrons (AE-8 model) have been developed.
Technical Paper

A Feasibility Study on the Use of Ethanol/Automotive Gasoline Blends in General Aviation Aircraft

1986-10-01
861598
Considering the rising cost and diminished availability of 100-octane, low-lead (100 LL) aviation gasoline, owners of aircraft certified for 100 LL may be forced to find an alternative fuel in the near future. This study proposed a blend of 200-proof anhydrous ethanol ($1.70 per gallon) and automotive gasoline ($1.15 per gallon) as a replacement for aviation gasoline ($1.90 per gallon). The research program included materials compatibility tests, Cooperative Fuel Research (CFR) engine tests, static thrust tests, and a flight test to determine the feasibility of such a blend as a fuel for an unmodified aircraft engine. Throughout all tests, blends burned as well as aviation gasoline. The static thrust tests indicated that a blend of 35% ethanol/65% automotive gasoline yielded the maximum thrust output. The materials tests revealed metals to be unaffected by contact with the blend fuel. Fibrous growths were discovered in the blend and in the automotive gasoline samples.
Technical Paper

A Feed-Back Thermal Regulation System for the Columbus Free Flyer Battery Section

1991-07-01
911409
The BSTCA (Battery Section Thermal Control Assembly) is a module of the Columbus MTFF (Man Tended Free Flyer). Electrical power required during eclipse periods, is made available from six nickel hydrogen batteries. A sophisticated multi-radiator configuration, with a hybrid heat pipe network, has evolved. Autonomous control of the assembly heat rejection capability has been achieved by a integrated network of LTHP's (Liquid Trap Heat Pipes) and CCHP's (Constant Conductance Heat Pipes) under the control of a conventional HCU (Heater Control Unit). The process of design selection and verification is discussed, for the BSTCA, with a detailed LTHP component presentation.
Technical Paper

A Fuel-Cell Electric Vehicle with Cracking and Electrolysis of Ammonia

2010-11-02
2010-01-1791
Hydrogen has difficulties in handling in a fuel cell vehicle, and has a fault with taking a big space there. The authors have proposed a hydrogen generation system using ammonia as a liquid fuel for fuel-cell electric vehicles. Ammonia has an advantage not to emit greenhouse effect gases because it does not contain a carbon atom. Hydrogen content of ammonia is 17.6 wt% and hydrogen quantity per unit mass is large. Ammonia can be easily dissociated to hydrogen and nitrogen by heating. Therefore, ammonia is an attractive hydrogen supply source for fuel cell vehicles. The ammonia hydrogen generation system of this study consists of a vaporizer, a heat exchanger and a cracking reactor with a separator. Ammonia is heated with the heat exchanger and sent to the cracking reactor, after it is evaporated through the vaporizer from the liquid ammonia. The ammonia is cracked to hydrogen and nitrogen with an appropriate catalyst.
Technical Paper

A Grand Design of Future Electric Vehicle with Fuel Economy More than 100 Km/Liter

1999-08-02
1999-01-2711
In this study, the authors concluded that a super energy-efficient vehicle (SEEV) with fuel economy more than 100km/liter could be possible with the present technology level. The new environmentally-compatible vehicle was designed to mitigate urban warming, air pollution and CO2 emissions in the urban area. The authors evaluated optimal specifications of the new concept energy-efficient electric vehicle (EV) equipped with flywheel and photovoltaic (PV) cell and also reported the results of the running simulations for the proposed vehicle. The proposed SEEV will be very promising to mitigate urban and global warming, and toconserve fossil fuel consumption.
Technical Paper

A Laboratory Setup for Observation of Loop Heat Pipe Characteristics

2006-07-17
2006-01-2170
Heat pipes, loop heat pipes and capillary pumped loops are heat transfer devices driven by capillary forces with high-effectiveness & performance, offering high-reliability & flexibility in varying g-environments. They are suitable for spacecraft thermal control where the mass, volume, and power budgets are very limited. The Canadian Space Agency is developing loop heat pipe hardware aimed at understanding the thermal performance of two-phase heat transfer devices and in developing numerical simulation techniques using thermo-hydraulic mathematical models, to enable development of novel thermal control technologies. This loop heat pipe consists of a cylindrical evaporator, compensation chamber, condenser along with vapor and liquid lines, which can be easily assembled/disassembled for test purposes. This laboratory setup is especially designed to enable the visualization of fluid flow and phase change phenomena.
Technical Paper

A Methodology of Optimizing Steering Geometry for Minimizing Steering Errors

2024-01-16
2024-26-0062
The focus on driver and occupant safety as well as comfort is increasing rapidly while designing commercial vehicles in India. Improvements in the road network have enhanced road transport for commercial vehicles. Apart from the cost of operation and fuel economy, the commercial vehicles must deliver goods within stipulated time. These factors resulted in higher speed of operation for commercial vehicles. The design should not compromise the safety of the vehicle at these higher speeds of operation. The vehicle should obey the driver’s intended direction at all speeds and the response of the vehicle to driver input must be predictable without much larger surprises which can lead to accidents. The commercial vehicles are designed with rigid axle and RCB type steering system. This suspension and steering design combination introduce steering errors when vehicle travel over bump, braked and while cornering.
Technical Paper

A New Lab for Testing Biofiltration for Advanced Life Support

2005-07-11
2005-01-3060
Bioregenerative systems for removal of gaseous contaminants are desired for long-term space missions to reduce the equivalent system mass of the air cleaning system. This paper describes an innovative design of a new biofiltration test lab for investigating the capability of biofiltration process for removal of ersatz multi-component gaseous streams representative of spacecraft contaminants released during long-term space travel. The lab setup allows a total of 24 bioreactors to receive identical inlet waste streams at stable contaminant concentrations via use of permeations ovens, needle valves, precision orifices, etc. A unique set of hardware including a Fourier Transform Infrared (FTIR) spectrometer, and a data acquisition and control system using LabVIEW™ software allows automatic, continuous, and real-time gas monitoring and data collection for the 24 bioreactors. This lab setup allows powerful factorial experimental design.
Technical Paper

A New Process for Production of Oxygen from Lunar Minerals

1995-07-01
951736
The carbothermal reduction of ilmenite and iron- bearing silicates are important in the manufacture of steel and perhaps for manufacture of oxygen on the moon. Oxygen recovery from ilmenite and iron silicates is of interest because of the abundance of such minerals on the lunar surface and the relative ease of their reductions. A novel carbothermal reduction process is developed for the reduction of these minerals. This presentation summarizes an experimental study of the carbothermal reduction of ilmenite and iron-bearing silicates at temperatures between 850°C and 1100°C. Extremely high reduction rates are observed and investigated for carbothermal reduction of ilmenite by using deposited carbon. These results are compared to previous kinetics studies with regards to the different activation energy values reported.
Technical Paper

A New Zinc-Nickel Electroplating Process: Alternative to Cadmium Plating

1983-02-01
830686
New environmental regulations all over the world encourage the use of alternatives to cadmium plating for corrosion-protection systems used on steels. Boeing patents are pending on a non-cyanide replacement zinc-nickel alloy electroplating process with superior properties, including low hydrogen embrittlement and good corrosion protection, for use on high-strength steels and other substrates. Another advantage of this process is low cost because conventional electroplating tank facilities can be used and waste treatment cost can be reduced. The feasibility of this zinc-nickel plating process has been successfully demonstrated in the laboratory and is scheduled for manufacturing scale-up during 1983.
Technical Paper

A Nickel Hydrogen Common Pressure Vessel Battery Spaceflight Experiment

1992-08-03
929319
The Naval Research Laboratory (NRL) and Johnson Controls Inc. (JCI) have joined together in a cooperative research and development effort to “space qualify” the JCI Common Pressure Vessel (CPV) Nickel Hydrogen (NiH2) battery. JCI is providing two (2) NiH2 batteries to NRL. One is for qualification tests and the second is for the flight experiment. NRL is responsible for the design, test and integration of the battery with an existing spacecraft electrical power system, launch of the battery with the host spacecraft, and providing data from the flight experiment. Since the intent of the experiment is to “space qualify” the JCI NiH2 CPV design, the battery will be “on-line” and fully charged during the launch of the host spacecraft. This paper will describe the NRL-JCI Cooperative Research and Development Agreement, the NiH2 CPV battery experiment design, and the qualification test program.
Technical Paper

A Potential Solution for High-Efficiency Aircraft Powerplants - the Scotch Yoke X-Engine Aero-Diesel

2017-09-19
2017-01-2042
A newly-invented "X"-configuration engine utilizing the Scotch yoke mechanism renders potential for the best power/weight ratio of any piston engine. Due to its inherent space and weight efficiency, low stress levels on critical components and low bearing pressures, this new configuration can be designed for aircraft applications using high-pressure 4-stroke diesel cycle with large numbers of cylinders - as many as 24 or 32 cylinders - to minimize engine weight and cross-sectional area. Given the efficiency advantage of 4-stroke turbo-diesel cycle over turbine engines, a study reveals that diesel X-engines may be a preferable solution to turbine engines for airplanes, helicopters and UAVs up to approximately 60000 lbs max. weight @takeoff. Calculations using existing turbine-powered aircraft as a baseline indicate potential for 35 to 50% lower fuel consumption with no compromise to maximum takeoff weight, payload, range, cruise speed, maximum speed or takeoff power.
X