Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

10 KWe Dual-Mode Space Nuclear Power System for Military and Scientific Applications

1992-08-03
929072
A 10 KWe dual-mode space power system concept has been identified which is based on INEL's Small Externally-fueled Heat Pipe Thermionic Reactor (SEHPTR) concept. This power system will enhance user capabilities by providing reliable electric power and by providing two propulsion systems; electric power for an arc-jet electric propulsion system and direct thrust by heating hydrogen propellant inside the reactor. The low thrust electric thrusters allow efficient station keeping and long-term maneuvering. The direct thrust capability can provide tens of pounds of thrust at a specific impulse of around 730 seconds for maneuvers that must be performed more rapidly. The direct thrust allows the nuclear power system to move a payload from Low Earth Orbit (LEO) to Geosynchronous Earth Orbit (GEO) in less than one month using approximately half the propellant of a cryogenic chemical stage.
Technical Paper

270-Vdc/Hybrid 115-Vac Electric Power Generating System Technology Demonstrator

1991-09-01
912051
Sundstrand is investigating 270-Vdc/hybrid 115-Vac electrical power generating and distribution systems technology so as to be well prepared to offer such systems for future aircraft applications. The approach taken has been to design, build, and test a representative system that meets or exceeds the tightest of the performance standards as defined by miliary standards. This paper describes a single-channel, 120-kW hybrid system and presents some typical performance data. The dc bus supplies a 30-kVA, 400-Hz, 115-Vac inverter; constant power load banks of up to 150 kW; and a resistive load bank of up to 90 kW. System simulation studies indicated the potential for unstable operation due to the negative impedance of the constant power load in conjunction with the source ripple filter and the load EMI filters. Unstable voltage and current were observed in system testing when the magnitude of the source impedance was not sufficiently below that of the load impedance.
Technical Paper

270-Vdc/Hybrid 115-Vac Electric Power Generating System Technology Demonstrator Evolution to a Dual-Channel, More Electric Aircraft Technology Development Testbed

1991-09-01
912183
Sundstrand has been investigating 270-Vdc/hybrid 115-Vac electrical power generating systems (EPGS) technology in preparation for meeting the electrical power generating system (EPGS) requirements for future aircraft (1). Systems such as the one being investigated are likely to be suitable for the More-Electric Aircraft (MEA) concepts presently under industry and military study. The present Sundstrand single-channel testbed is being further expanded to better understand the electrical system performance characteristics and power quality requirements of an MEA in which traditional mechanical subsystems are replaced by those of a “more-electric” nature. This paper presents the most recent Sundstrand 270-Vdc system transient performance data, and describes the modifications being made to the 270-Vdc/hybrid 115-Vac testbed.
Standard

400 Hz CONNECTION AIRCRAFT ELECTRICAL MAINTENANCE PROCEDURES

1994-12-01
HISTORICAL
AIR4365
This SAE Aerospace Information Report (AIR) describes field-level procedures to determine if 400 Hz electrical connections for external power may have been subjected to excessive wear, which may result in inadequate disengagement forces.
Standard

400 Hz Connection Aircraft Electrical Maintenance Procedures

2008-03-28
HISTORICAL
AIR4365A
This SAE Aerospace Information Report (AIR) describes field-level procedures to determine if 400 Hz electrical connections for external power may have been subjected to excessive wear, which may result in inadequate disengagement forces.
Journal Article

400Hz High Speed Static Transfer Switch

2008-11-11
2008-01-2877
The objective of this project was to replace electromechanical power line contactors with a Static Transfer Switch (STS) to improve the transfer of electrical power between aircraft generators and decrease required maintenance. The switch requirements include high reliability, lightweight, and high speed (less than 15mS) power transfer. An STS can shorten the bus transfer time to less than the “ride-through” of aircraft electronic loads and therefore have the ability to control and transfer electrical power while maintaining critical mission requirements. The content of this paper and presentation will discuss the initial problem, the research and development approach, design, and initial testing of the STS.
Journal Article

500 Hours Endurance Test on Biodiesel Running a Euro IV Engine

2010-10-25
2010-01-2270
A 500 hours endurance test was performed with a heavy-duty engine (Euro IV); MAN type D 0836 LFL 51 equipped with a PM-Kat®. As fuel 100% biodiesel was used that met the European specification EN 14214. The 500 hours endurance test included both the European stationary and transient cycle (ESC and ETC) as well as longer stationary phases. During the test, regulated emissions (carbon monoxide, nitrogen oxides, hydrocarbons and particulate matter), the particle number distribution and the aldehydes emission were continuously measured. For comparison, tests with fossil diesel fuel were performed before and after the endurance test. During the endurance test, the engine was failure-free for 500 hours with the biogenic fuel. There were almost no differences in specific fuel consumption during the test, but the average exhaust gas temperature increased by about 15°C over the time. Emissions changed only slightly during the test.
Technical Paper

727, B-52 Retrofit with PW2037…. Meeting Today's Requirements

1982-02-01
821443
Offering aircraft fuel efficiency improvements of 30 to 40% over the powerplants it will replace, PW2037 retrofit in the 727-200 Advanced and B-52 aircraft is attracting heightened interest. A comparison of PW2037 technical characteristics with current aircraft powerplants substantiates the improvement potential.The engine installation and modifications necessary for aircraft system compatibility do not impose significant increases in complexity or cost. The resultant improvements in aircraft capability (727 and B-52) and economic viability to airlines (7271 produce aircraft uniquely suited to today's operational requirements and constrained equipment budgets.
Technical Paper

777 Wing and Engine Ice Protection System

1997-07-14
972260
This paper describes the wing and engine ice protection system, used on all 777 aircraft. The 777 ice protection system is unique in two ways: it has an advanced control system which minimizes aircraft power consumption. In addition, the system was procured by the prime contractor, Boeing, as a fully integrated subsystem from a single supplier.
Technical Paper

912iS Fuel Injected Aircraft Engine

2012-10-23
2012-32-0049
The 912 engine is a well known 4-cylinder horizontally opposed 4-stroke liquid-/air-cooled aircraft engine. The 912 family has a strong track record: 40 000 engines sold / 25 000 still in operation / 5 million flight hours annually. 88% of all light aircraft OEMs use Rotax engines. The 912iS is an evolution of the Rotax 912ULS carbureted engine. The “i” stands for electronic fuel injection which has been developed according to flight standards, providing a better fuel efficiency over the current 912ULS of more than 20% and in a range of 38% to 70% compared to other competitive engines in the light sport, ultra-light aircraft and the general aviation industry. BRP engineers have incorporated several technology enhancements. The fully redundant digital Engine Control Unit (ECU) offers a computer based electronic diagnostic system which makes it easier to diagnose and service the engine.
Technical Paper

A 50 Wh Open Core High-Speed Flywheel

1999-08-02
1999-01-2615
In low earth orbit satellite applications, spacecraft power is provided by photovoltaic cells and batteries. Unfortunately, use of batteries present difficulties due to their poor energy density, limited cycle lifetimes, reliability problems, and the difficulty in measuring the state of charge. Flywheel energy storage offers a viable alternative to overcome some of the limitations presented by batteries. FARE, Inc. has built a 50 Wh flywheel energy storage system. This system, called the Open Core Flywheel, is intended to be a prototype energy storage device for low earth orbit satellite applications. To date, the Open Core Flywheel has achieved a rotational speed of 26 krpm under digital control.
Journal Article

A Carbon Intensity Analysis of Hydrogen Fuel Cell Pathways

2021-03-02
2021-01-0047
A hydrogen economy is an increasingly popular solution to lower global carbon dioxide emissions. Previous research has been focused on the economic conditions necessary for hydrogen to be cost competitive, which tends to neglect the effectiveness of greenhouse gas mitigation for the very solutions proposed. The holistic carbon footprint assessment of hydrogen production, distribution, and utilization methods, otherwise known as “well-to-wheels” carbon intensity, is critical to ensure the new hydrogen strategies proposed are effective in reducing global carbon emissions. When looking at these total carbon intensities, however, there is no single clear consensus regarding the pathway forward. When comparing the two fundamental technologies of steam methane reforming and electrolysis, there are different scenarios where either technology has a “greener” outcome.
Technical Paper

A Catalytic Combustion System Coupled with Adsorbents for Air Clean Up in Sealed Spacecraft Environment

2003-07-07
2003-01-2624
Catalytic combustion coupled with activated carbon and molecular sieve adsorbents is applicable to all areas of air and gas clean up ranging from high to low levels of pollutants and trace contaminants control in a spacecraft environment is of no exception. In this study we propose a combined activated charcoal and catalytic combustion system based on a 70 watt power input achieving 350°C, operating on a 6 hour per 24 hour day catalytic cycle with an actual flow of 10.6 l min-1 in a residual free volume of 60 m3.
Technical Paper

A Centrifugal Pump Concept Designed for Multiple Use in Space

1993-07-01
932120
A centrifugal pump concept was elaborated for a multiple application in future spacecrafts. Based on this concept a prototype of a small centrifugal pump was manufactured and comprehensively tested. The model pump has been approved in different test series with the fluids liquid ammonia and demineralized water. The design of the model pump was driven by the strict requirements of COLUMBUS, namely long life, noiseless operation, minimum mass and low energy consumption. Because of its modular design and as a result of selected materials of multiple compatibility, this pump is suited for the delivery of various further fluids, such as freons, hydrocarbons, propellants (hydrazine) etc.. It is also capable of pumping corrosive or toxic fluids for laboratory processes in space. The wide speed range from about 1,000 to 20,000 rpm which corresponds to a flow from about 1 to 20 l/min, permits an energy saving adaption and flow control.
Technical Paper

A Characterization of Accelerations Induced on the Free Floating Testbed During Parabolic Flight

1995-07-01
951473
The goal of the Controlled Ecological Life Support System (CELSS) Program at NASA Ames Research Center is to develop life support systems that will support humans during long duration space missions. These life support systems must be able to regenerate air and water for the crew while at the same time minimize power consumption and disposables. A series of microgravity compatible subsystems will be required to meet this goal. However, operating these subsystems in microgravity raises serious technical problems. Existing subsystems may need to be refined or new technologies may need to be developed to overcome these problems. To evaluate and test these new subsystems and technologies, a series of KC-135 precursor flights are being flown by members of the CELSS Flight Group. One of the key elements in these flight activities is the free floating testbed (FFTB).
Technical Paper

A Combustion Products Analyzer for Contingency Use During Thermodegradation Events on Spacecraft

1991-07-01
911479
As mission length and the number and complexity of payload experiments increase, so does the probability of thermodegradation contingencies (e.g. fire, chemical release and/or smoke from overheated components or burning materials), which could affect mission success. When a thermodegradation event occurs on board a spacecraft, potentially hazardous levels of toxic gases could be released into the internal atmosphere. Experiences on board the Space Shuttle have clearly demonstrated the possibility of small thermodegradation events occurring during even relatively short missions. This paper will describe the Combustion Products Analyzer (CPA), which is being developed under the direction of the Toxicology Laboratory at Johnson Space Center to provide necessary data on air quality in the Shuttle following a thermodegradation incident.
Technical Paper

A Comparative Study of a Multi-Gas Generator Fan to a Turbofan Engine on a Vertical Takeoff and Landing Personal Air Vehicle

2006-08-30
2006-01-2435
This paper attempts to assess the benefits of a unique distributed propulsion concept, known as the Multi-Gas Generator Fan (MGGF) system, over conventional turbofan engines on civilian vertical takeoff and landing (VTOL) applications. The MGGF-based system has shown the potential to address the fundamental technical challenge in designing a VTOL aircraft: the significant mismatch between the power requirements at lift-off/hover and cruise. Vehicle-level performance and sizing studies were implemented using the Grumman Design 698 tilt-nacelle V/STOL aircraft as a notional personal air vehicle (PAV), subjected to hypothetical single engine failure (SEF) emergency landing requirements and PAV mission requirements.
Journal Article

A Comparison between Regular and Vibration-Assisted Drilling in CFRP/Ti6Al4V Stack

2014-09-16
2014-01-2236
As aircraft programs currently ramp up, productivity of assembly processes needs to be improved while keeping quality, reliability and manufacturing cost requirements. Efficiency of the drilling process still remains an issue particularly in the case of CFRP/metal stacks: hot and long metallic chips are difficult to remove and often damage the surface of CFRP holes. Low frequency axial vibration drilling has been proposed to solve this issue. This innovative drilling process allows breaking up the metallic chips in such a way that jamming is avoided. This paper presents a case of CFRP/Ti6Al4V drilling on a CNC machine where productivity must be increased. A comparison is made between the current regular process and the MITIS drilling process. First the analysis and comparison method is presented. The current process is analyzed and its limits are highlighted. Then the vibration process is implemented and its performances are studied.
X