Refine Your Search

Search Results

Viewing 1 to 6 of 6
Technical Paper

Analyzing and Simulating Brake Rotor Temperatures: A Technique Applied to a Formula SAE Vehicle

2006-01-01
2006-01-1974
Many lightweight vehicles use non-ventilated (also called vane-less or solid) iron alloy rotors in their vehicle braking systems both on the front and rear wheels. This solid rotor configuration is also common on the rear wheels of many full size production vehicles. This paper's object is to identify the heat transfer coefficients of such a solid brake disc arrangement using different experimental methods and then show how this information can be used both as a design tool and a simulator to predict temperatures in unknown or untested conditions.
Journal Article

Design of a Calorimeter for Measurement of Heat Generation Rate of Lithium Ion Battery Using Thermoelectric Device

2017-03-28
2017-01-1213
Analysis of thermal behavior of Lithium ion battery is one of crucial issues to ensure a safe and durable operation. Temperature is the physical quantity that is widely used for analysis, but limited for accurate investigations of behavior of heat generation of battery because of sensitivities affected by heat transfer in experiments. Calorimeter available commercially is widely used to measure the heat generation of battery, but does not follow required dynamics because of a relatively large thermal time constant given by cavity and a limited heat transfer capability. In this paper, we proposed a highly dynamic calorimeter that was constructed using two thermoelectric devices (TEMs). For the design of the calorimeter and its calibration, a printed circuit board (PCB) with the same size as the battery was used as a dummy load to generate controlled heat.
Technical Paper

Experimental Investigation of Low Cost, Low Thermal Conductivity Thermal Barrier Coating on HCCI Combustion, Efficiency, and Emissions

2020-04-14
2020-01-1140
In-cylinder surface temperature is of heightened importance for Homogeneous Charge Compression Ignition (HCCI) combustion since the combustion mechanism is thermo-kinetically driven. Thermal Barrier Coatings (TBCs) selectively manipulate the in-cylinder surface temperature, providing an avenue for improving thermal and combustion efficiency. A surface temperature swing during combustion/expansion reduces heat transfer losses, leading to more complete combustion and reduced emissions. At the same time, achieving a highly dynamic response sidesteps preheating of charge during intake and eliminates the volumetric efficiency penalty. The magnitude and temporal profile of the dynamic surface temperature swing is affected by the TBC material properties, thickness, morphology, engine speed, and heat flux from the combustion process. This study follows prior work of authors with Yttria Stabilized Zirconia, which systematically engineered coatings for HCCI combustion.
Technical Paper

Modeling the Effect of Thermal Barrier Coatings on HCCI Engine Combustion Using CFD Simulations with Conjugate Heat Transfer

2019-04-02
2019-01-0956
Thermal barrier coatings with low conductivity and low heat capacity have been shown to improve the performance of homogeneous charge compression ignition (HCCI) engines. These coatings improve the combustion process by reducing heat transfer during the hot portion of the engine cycle without the penalty thicker coatings typically have on volumetric efficiency. Computational fluid dynamic simulations with conjugate heat transfer between the in-cylinder fluid and solid piston of a single cylinder HCCI engine with exhaust valve rebreathing are carried out to further understand the impacts of these coatings on the combustion process. For the HCCI engine studied with exhaust valve rebreathing, it is shown that simulations needed to be run for multiple engine cycles for the results to converge given how sensitive the rebreathing process is to the residual gas state.
Journal Article

Reliability and Life Study of Hydraulic Solenoid Valve - Part 1 - A Multi-physics Finite Element Model

2009-04-20
2009-01-1138
A comprehensive multi-physics theoretical model of the solenoid valve used in an automobile transmission is constructed using the finite element method. The multi-physics model includes the coupled effects of electromagnetic, thermodynamics and solid mechanics. The resulting finite element model of the solenoid valve provides useful information on the temperature distribution, mechanical and thermal deformations, and stresses. The model results predict that the solenoid valve is susceptible to a coupled electrical-thermo-mechanical failure mechanism. The coil can generate heat which can cause compressive stress and high temperatures that in turn could fail the insulation between the coil wires. The model facilitates the characterization of the solenoid valve performance, life and reliability and can be used as a predictive tool in future solenoid design.
Technical Paper

Thermal Characterization of Lithium-Ion Batteries under Varying Operating Conditions

2024-04-09
2024-01-2667
Despite the widespread adoption of lithium-ion batteries in various applications such as energy storage, concerns related to thermal management have been persisting, primarily due to the heat generated during their operation and the associated adverse effects on its efficiency, safety, and lifetime. Hence, the thermal characterization of lithium-ion batteries is essential for optimizing the layout of the battery cells for a pack design and the corresponding thermal management system. This study focuses on an experimental investigation of heat generation of Li-ion batteries under different operating conditions, including charge-discharge rates, ambient temperatures, states of charge, and compressive pressure. The experiments were conducted using a custom-designed multifunctional calorimeter, enabling precise measurement of the heat generation rate of the battery and the entropy coefficient. The measured results have shown a good match with the calculated heat generation rate.
X