Refine Your Search

Topic

Author

Search Results

Technical Paper

A Real-World Range Testing and Analysis Methodology Development for Battery Electric Vehicles

2024-01-16
2024-26-0124
Range anxiety is one of the major factors to be dealt with for increasing penetration of EVs in current Automotive market. The major reasons for range anxiety for customers are sparse charging infrastructure availability, limited range of Electric vehicles and range uncertainty due to diverse real-world usage conditions. The uncertainty in real world range can be reduced by increasing the correlation between the testing condition during vehicle development and real-world customer usage condition. This paper illustrates a more accurate test methodology development to derive the real-world range in electric vehicles with experimental validation and system level analysis. A test matrix is developed considering several variables influencing vehicle range like different routes, drive modes, Regeneration levels, customer drive behavior, time of drive, locations, ambient conditions etc.
Technical Paper

An Extensive Optimization Methodology to Validate the Exhaust After-Treatment System of a BS VI Compliant Modern Diesel Engine

2020-09-25
2020-28-0483
The Indian automotive industry has migrated from BS IV (Bharat stage IV) to BS VI (Bharat Stage VI) emission norms from 1st April 2020. This two-step migration of the emission regulations from BS IV to BS VI demands significant engineering efforts to design and integrate highly complex exhaust after-treatment system (EATS). In the present work, the methodology used to evaluate the EATS of a high power-density 1.5-liter diesel engine is discussed in detail. The EATS assembly of the engine consists of a diesel oxidation catalyst (DOC), a diesel particulate filter with selective catalytic reduction coating (sDPF), urea dosing module and urea mixer. Typically, all these components that are needed for emission control are integrated into a single canning of shell thickness ~1.5mm. Moreover, the complete EATS is directly mounted onto the engine with suitable mounting brackets on the cylinder block and cylinder head.
Technical Paper

An Investigation into the Disruption of Circadian Rhythms using Blue Light for Automotive Applications

2015-04-14
2015-01-1706
Melatonin, otherwise popularly known as the “sleep hormone” is known to govern the human circadian rhythms. Current studies indicate that the generation of melatonin is impacted by the ambient light. The natural sleep inducing behavior during night and in darkness, is also due to the same phenomenon. Studies have shown that light of particular wavelengths in the visible spectrum have a higher effect on the amount of melatonin secreted by the human body. Blue light in the wavelengths of around 468 nm is known to inhibit the melatonin secretion, the most. This branch of science known as photobiology is in its nascent stage and is a matter of research pursued by neurologists, endocrinologists and other lighting researchers. Photobiology has several potential applications in the automotive industry, the principal one being driver drowsiness prevention.
Technical Paper

Assessing the Effect of Torque Converter Losses on the NOx Emission and Engine Stability in TGDI AT Vehicle

2021-10-01
2021-28-0185
The emission norms around the world are continuously changing and getting stringent with every revision. India is on its way to make its emission norms at par with that prevailing in the developed nations. The cold-start condition is an important factor affecting vehicle emissions from gasoline direct injection (GDI) and port fuel injection (PFI) vehicles. In this paper, the effects of change in torque converter losses on emissions are experimentally investigated in a TGDI AT vehicle. The instant engagement of the torque converter puts a sudden load on the engine and thus affects its stability. Thus, to overcome the stability issue, Engine Torque has to be simultaneously increased for smooth engagement. As a result, the likelihood of the slightly leaner air-fuel mixture in the cylinder, which results in higher NOx formation, is much greater in an AT vehicle than that of a similar MT vehicle.
Technical Paper

Benefits of Variable Discharge Oil Pump on Performance of 3 Cylinder SI Engine

2017-01-10
2017-26-0051
Lubrication system is a critical factor for engine health. But it creates parasitic load and increased fuel consumption of the engine. The oil demand of an engine depends on engine speed, load, bearing clearances, operating temperature and engine's state of wear. Ideally, the oil pump should adapt the delivery volume flow to actual engine oil demand and should avoid unnecessary pumping of oil which causes increased power and fuel consumption. However in a conventional mechanical oil pump, there is no control on the oil flow and it is purely a function of operating speed. A variable discharge oil pump (VDOP) is an approach to reduce the parasitic losses wherein the oil flow is regulated based on the mechanical needs of the engine. This study is based on the results of a two stage VDOP installed on a 1.2 litre, 3 cylinder MPFI engine. The oil supply is regulated by a solenoid control which receives command from Engine Control Unit (ECU). The study was done in two stages.
Technical Paper

Calibration and Parametric Investigations on Lean NOx Trap and Particulate Filter Models for a Light Duty Diesel Engine

2020-04-14
2020-01-0657
To comply with the stringent future emission mandates of light-duty diesel engines, it is essential to deploy a suitable combination of emission control devices like diesel oxidation catalyst (DOC), diesel particulate filter (DPF) and DeNOx converter (LNT or SCR). Arriving at optimum size and layout of these emission control devices for a particular engine through experiments is both time and cost-intensive. Thus, it becomes important to develop suitable well-tuned simulation models that can be helpful to optimize individual emission control devices as well as arrive at an optimal layout for achieving higher conversion efficiency at a minimal cost. Towards this objective, the present work intends to develop a one-dimensional Exhaust After Treatment Devices (EATD) model using a commercial code. The model parameters are fine-tuned based on experimental data. The EATD model is then validated with experiment data that are not used for tuning the model.
Technical Paper

Computational and Experimental Investigation of Different Bowl Geometries on a CRDi Engine to Improve NOx-PM Trade-Off and Fuel Efficiency

2014-10-13
2014-01-2646
One of the major challenges for automotive industry today is to reduce tailpipe emission without compromising on fuel economy especially with the EURO 6, RDE, LEV III emissions and CO2 norms coming up. In case of diesel engines, with the emission norms becoming stringent more and more, it's difficult to improve tradeoff between NOx and PM emissions. After treatment systems give some edge in terms of tail pipe emission reduction but not on the cost, fuel economy and system simplicity front. For diesel engines the compression ratio and design of the bowl geometry plays a crucial role in controlling emission and CO2. The target was to achieve EURO 6 tailpipe emissions with minimum dependency on after treatment. With the target after treatment conversion efficiency the engine out targets were framed. A study of different bowl geometries were made that would help achieve this target of improving reduced engine out emissions.
Technical Paper

Cost Efficient Bharat (Trem) Stage IV Solutionsfor TractorEngines

2015-01-14
2015-26-0092
India's high Air Pollution level is the focus of discussions as we grow. Plans to combat this menace and implement the latest Technologies are gathering pace. The increasingly stringent emission legislations provide a continuous challenge for the non-road market. Tractor manufacturers are evaluating the need for cost-effective technology to meet upcoming stringent emissions targets. Simply following global approach may not work for Indian market considering the customer usage pattern & perceptions. With an anticipation of upcoming emission norms being based on US-EPA TIER-4 final up to 75 Hp, major technology up gradation is expected for farm equipment sold in India. The enormous diversification of engines within the different power classes as well as the operation specific requirements regarding various duty cycles, robustness and durability, requires specific solutions to meet these legal limits.
Technical Paper

Crash Pulse Characterization to Minimize Occupant Injuries in Offset Frontal Crash

2017-01-10
2017-26-0019
The objective of this paper is to minimize occupant injuries in offset frontal crash with pulse characterization, by keeping vehicle front crush space & occupant survival space constant. Crash pulse characterization greatly simplifies the representation of crash pulse time histories. The parameters used to characterize the crash pulse are velocity change, time & value of dynamic crush, and zero cross-over time. The crash pulse slope, peaks, average values at discrete time intervals have significant role on occupant injuries. Vehicle crash pulse of different trends have different impact on occupant injury. The intension of crash pulse characterization study is to come out with one particular crash pulse which shows minimum occupant injuries. This study will have significant impact in terms of front loading on crash development of vehicle.
Technical Paper

DeNOx Strategy Adaptation and Optimization in Naturally Aspirated Engine LCV Application for BSVI OBD-II Norms

2024-01-16
2024-26-0160
Powertrain complexity rapidly increasing to meet fast moving regulation requirements. The BS6 Phase-1 regulation norms were implemented in India from April 1, 2020 and replaced the previous BS4 norms. Phase-2 of the BS6 regulation norms were came into effect on April 1, 2023. To meet this stringent regulation requirement, need effective performance of after treatment systems like DOC, DPF and SCR demands critical hardware selection and implementation. In Indian market, LCV application is cost sensitive and highly competitive where operational cost is most critical factor. Naturally aspirated engine has less operating cost, which is the best for LCV applications, but is has its own challenges to meet BS6 norms like higher engine out NOx, dynamic temperature profiles etc. A robust DeNOx emissions strategy is developed in naturally aspirated engine LCV application to meet cycle emissions, real drive emissions and OBD requirements.
Technical Paper

Design Strategies for Meeting ECE R14 Safety Test for Light Commercial Vehicle

2010-10-05
2010-01-2017
The ECE R-14, AIS015 safety standard specifies the requirements of the safety belt anchorages namely, minimum numbers, their locations, static strength to reduce the possibility of their failure during accidental crashes for effective occupant restraint and the test procedures. This standard applies to the anchorages of safety belts for adult occupants of forward facing or rearward facing seats in vehicles of categories M and N. ECE R14 ensures the passenger safety during sudden acceleration/retardation and accidents. Early simulations revealed some structural short falls that demanded cabin improvements in order to fulfill regulation requirements for the seal belt anchorage test. This paper describes the innovative design modifications done to meet the seat belt anchorage test. Good correlation with the test is achieved in terms of deformations. These simulation methods helped in reducing the number of intermediate physical tests during the design process.
Journal Article

Development of Hydrogen Fuelled Low NOx Engine with Exhaust Gas Recirculation and Exhaust after Treatment

2017-01-10
2017-26-0074
Air pollution caused by vehicular tail pipe emissions has become a matter of grave concern in major cities of the world. Hydrogen, a carbon free fuel is a clean burning fuel with only concern being oxides of nitrogen (NOx) formed. The present study focuses on the development of a hydrogen powered multi-cylinder engine with low NOx emissions. The NOx emissions were reduced using a combination of an in-cylinder control strategy viz. Exhaust Gas Recirculation (EGR) and an after treatment method using hydrogen as a NOx reductant. In the present study, the low speed torque of the hydrogen engine was improved by 38.46% from 65 Nm to 90 Nm @ 1200 rpm by operating at an equivalence of 0.64. The higher equivalence ratio operation compared to the conventional low equivalence ratio operation lead to an increase in the torque generated but increased NOx as well.
Technical Paper

Development of an all Speed Governed Diesel-CNG Dual Fuel Engine for Farm Applications

2021-09-22
2021-26-0101
This paper discusses the development of an all speed governed diesel-natural gas dual fuel engine for agricultural farm tractor. A 45 hp, 2.9 liters diesel-natural gas dual fuel engine with a novel closed loop secondary fuel injection system was developed. A frugal approach without any modification of the base mechanical diesel fuel injection system was followed. This approach helped to minimize the cost impact, while meeting performance and emissions at par with neat diesel operation. Additional cost on gas injection system is redeemed by cost savings on diesel fuel. The dual fuel technology developed by Mahindra & Mahindra Ltd., substitutes on an average approximately 40% of diesel with compressed natural gas, meeting the TREM III A emission norms for dual fuel while meeting all application requirements. The governing performance of the tractor was found to be superior than base diesel tractor.
Technical Paper

Driver Reference Generation and Integrated Vehicle Lateral Dynamics Control

2017-01-10
2017-26-0355
With the increase in number of vehicles and amount of traffic, safety has come out to be a big concern in vehicle’s dynamic stability. There are certain system’s limits beyond which if a vehicle is pushed it may become unstable. One of the major areas of research in vehicle dynamics control has been lateral velocity and yaw rate control. With this, situations like vehicle spinning, oversteer, understeer etc. can be addressed. The challenge for the next generations of vehicle control is the integration of the available actuators into a unique holistic control concept. This paper presents the driver reference generator developed for the Integrated Vehicle Dynamics Control concept. The driver reference generator processes the driver inputs to determine the target vehicle behavior. The generation of reference behavior is a key factor for the integrated control design. The driver reference generation is validated on a real vehicle.
Technical Paper

EGR Flow Control Strategy for a Smaller Capacity Diesel Engine Using a Phase Shifting Chamber

2020-04-14
2020-01-1358
Exhaust gas recirculation (EGR) is an effective strategy to control NOx emissions in diesel engines. EGR reduces NOx through lowering the oxygen concentration in the combustion chamber, as well as through heat absorption. The stringent emission norms have forced diesel engines to further improve thermal efficiency and reduce nitrogen oxides (NOx). Throttle control is adopted in diesel intake system to control the EGR & fresh charge flow and to meet the emissions norms. In three or lesser cylinder. diesel engines, predominantly single and two-cylinder diesel engines, there is a higher possibility of the exhaust gas reaching the intake throttle and Particulate matter getting deposited on the throttle body. This can significantly affect the idling stability and intake restriction in prolonged usage. In idling condition, the clogged throttle body stagnates the fresh charge from entering the cylinder. The work aims at the study of flow pattern for EGR reaching the throttle body.
Technical Paper

Effect of Anti-Dive Suspension Geometry on Braking Stability

2022-09-19
2022-01-1172
Suspension plays a crucial role in stabilizing, comfort and performance of a vehicle. During vehicle braking operation, load transfer happens from rear axle to front axle resulting in shifting of vehicle’s center of gravity towards vehicle front for a momentarily duration which is called diving. This phenomenon leads to dropping of traction at rear wheel end resulting in lifting of rear axle with front wheel as pivot. This causes increase in front to rear weight ratio of vehicle system and compromising driver safety due to skidding and locking of rear wheel-end. To minimize this phenomenon’s affect, optimum anti-dive suspension geometry is used to have better rear wheel end traction resulting in improved braking stability.
Technical Paper

Effect of Gasoline-Ethanol Blends on GDI Engine to Reduce Cost of Vehicle Ownership

2019-11-21
2019-28-2379
A major challenge for combustion engine development is to optimize the engine for improved fuel economy, reduce greenhouse gases. Stringent CAFÉ and emission norms require the customer to pay higher capital on vehicles. To offset the cost of ownership- cheaper and alternative energy sources are being explored. Ethanol blend with regular Gasoline, and CNG are such alternative fuels. Reducing the consumption of Gasoline also helps India’s dependence on import of crude oil. The study was carried on turbo-charged gasoline direct injection engine. The effect of ethanol on engine and vehicle performance is estimated and simulated numerically. The work is split into three stages: first the base 1D engine performance model was calibrated to match the experimental data. In parallel, vehicle level Simulink model was built and calibrated to match the NEDC cycle performance.
Technical Paper

Emission Optimization Approach to Meet the Current Indian Emission Norm Without EGR Cooling for a Vehicle Equipped with Common Rail Diesel Engine

2014-03-24
2014-01-2022
In India, diesel engine powered vehicles are finding rising demand due to the subsidy offered on diesel. Currently, BS-IV emission norm (equivalent to E-IV in Europe) is in existence. To meet this emission norm, OEM look for improved engine design, use of common rail injection system, advanced after treatment. In the current article, a methodology is demonstrated by which the required emissions on multipurpose vehicle (MPV) powered with 2.2L common rail injection system was met with no need of EGR cooling. This was achieved by identifying the operating points from the BS-IV emission cycle where EGR cooling is beneficial. The next step involves assessing the loss of function due to its removal. The final step involves strategies which can bring the original optimized value of NOx-PM. Removal of EGR cooling avoids the cooling of intake charge and reduces the HC and CO emission. Also, it gets rid of complication in the under bonnet packaging and leads to maintenance free operation.
Technical Paper

Engine out Particulate Emission Optimization with Multiple Injection Strategy for 3-Cylinder Turbo GDI E6d Engine

2021-09-22
2021-26-0070
With the increase in the number of automobiles on road, there is a very strong emphasis on reducing the air pollution which led to evolution of stringent emission norms. To meet these stringent emission norms, the ideal solution is to optimize the engine hardware and the combustion system to reduce the emission at source thereby reducing the dependency on exhaust after treatment system. Gasoline Direct Injection (GDI) engines are gaining popularity worldwide as they provide a balance between fun to drive and fuel efficiency. Controlling the particle emissions especially Particle Number (PN) is a challenge in GDI engines due to the nature of its combustion system. In this study, experiments were performed on a 1.2Litre 3-cylinder 250bar GDI engine to capture the effect of injection strategies on PN.
Technical Paper

Evaluation of Intercooler Efficiency as a Technique for Reducing Diesel Engine Emissions

2011-04-12
2011-01-1133
As the emission targets are getting tighter, efforts are made to improve the emission by all possible means. This work emphasis the potential of intercooler to reduce exhaust gas emissions (CO, HC, NOx and PM). A detailed analysis of experimental results on emissions is presented. The effect of intercooler efficiency on emissions is explained. A multi-utility vehicle equipped with common rail diesel engine was tested in NEDC cycle in chassis dynamometer. Ideally the vehicle emission lab should replicate a flat straight road condition & natural airflow. To obtain the airflow a variable velocity fan is used. The velocity of air emerging from the fan and relative position of the fan with vehicle has a significant role in intercooler efficiency and hence on emissions. This work explains the exercise carried out to correlate the intercooler efficiency and exhaust emissions with fan position and velocity.
X