Refine Your Search

Search Results

Viewing 1 to 4 of 4
Technical Paper

Evaluation of Cabin Comfort in Air Conditioned Buses Using CFD

2014-04-01
2014-01-0699
The objective of the work presented in this paper is to provide an overall CFD evaluation and optimization study of cabin climate control of air-conditioned (AC) city buses. Providing passengers with a comfortable experience is one of the focal point of any bus manufacturer. However, detailed evaluation through testing alone is difficult and not possible during vehicle development. With increasing travel needs and continuous focus on improving passenger experience, CFD supplemented by testing plays an important role in assessing the cabin comfort. The focus of the study is to evaluate the effect of size, shape and number of free-flow and overhead vents on flow distribution inside the cabin. Numerical simulations were carried out using a commercially available CFD code, Fluent®. Realizable k - ε RANS turbulence model was used to model turbulence. Airflow results from numerical simulation were compared with the testing results to evaluate the reliability.
Technical Paper

Sensitivity Analysis of Windshield Defrost Characteristics Impact on Occupant Thermal Comfort

2017-03-28
2017-01-0143
During cabin warm-up, effective air distribution by vehicle climate control systems plays a vital role. For adequate visibility to the driver, major portion of the air is required to be delivered through the defrost center ducts to clear the windshield. HVAC unit deliver hot air with help of cabin heater and PTC heater. When hot air interacts with cold windshield it causes thermal losses, and windshield act as sink. This process may causes in delay of cabin warming during consecutive cabin warming process. Thus it becomes essential to predict the effect of different windscreen defrost characteristics. In this paper, sensitivity analysis is carried for different windscreen defrosts characteristics like ambient conditions, modes of operation; change in material properties along with occupant thermal comfort is predicted. An integrated 1D/3D CFD approach is proposed to evaluate these conditions.
Technical Paper

Vibration Analysis on Driver Seat for Small Cars

2011-01-19
2011-26-0119
In India, small car segment is having maximum sale, which includes cars like Maruti 800, SUZUKI Swift, Maruti Alto, Tata Indica, etc. Driver seat is one of the main aspects to be considered while defining comfort in a moving vehicle. The current analysis concentrates on driver seat because driver comfort is of main concern since it is the most occupied seat in any vehicle and the occupancy is for longer duration. In addition to sitting, the driver's job is to manipulate different controls and concentrate parallely on many aspects. The research work aims at studying the vertical vibrations transferred to the human body via seat. The work is an attempt towards studying dynamic characteristics of driver seat for comfort through objective evaluation. For objective evaluation, two tests were conducted; Seat Effective Amplitude Transmissibility (SEAT) test and Ride Comfort Index test under two different conditions, i.e., car level and seat level testing on Car "A" and Car "B."
Technical Paper

Virtual Development of Optimum Twist Beam Design Configuration for a New Generation Passenger Car

2007-08-05
2007-01-3562
It is customary to select a twist beam rear suspension for front wheel driven small and medium range passenger cars. Besides better primary / secondary ride comfort, roll stiffness tuning ability, ease of assembly & good packaging solutions than the conventional semi trailing arm/ rigid axle suspensions, twist beam suspension system accentuate the concentration required in placing & orienting the cross beam to achieve certain imperative kinematical characteristics. In order to make the solutions of the required kinematical targets viable, it is vital to have the packaging space and stress concentration within yield limits given the weight & cost targets. This paper presents the work done on twist beam type suspension for a new generation entry level B-Class hatchback vehicle developed. To reduce the time consumed in validation of different design proposals a virtual validation process was developed.
X