Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

1D-3D Analysis of the Scavenging and Combustion Process in a Gasoline and Natural-Gas Fuelled Two-Stroke Engine

2008-04-14
2008-01-1087
The paper presents a 1D-3D numerical model to simulate the scavenging and combustion processes in a small-size spark-ignition two-stroke engine. The engine is crankcase scavenged and can be operated with both gasoline and Natural Gas (NG). The analysis is performed with a modified version of the KIVA3V code, coupled to an in-house developed 1D model. A time-step based, two-way coupled procedure is fully described and validated against a reference test. Then, a 1D-3D simulation of the whole two-stroke engine is carried out in different operating conditions, for both gasoline and NG fuelling. Results are compared with experimental data including instantaneous pressure signals in the crankcase, in the cylinder and in the exhaust pipe. The procedure allows to characterize the scavenging process and quantify the fresh mixture short-circuiting, as well as to analyze the development of the NG combustion process for a diluted mixture, typically occurring in a two-stroke engine.
Technical Paper

2-Stroke CAI Combustion Operation in a GDI Engine with Poppet Valves

2012-04-16
2012-01-1118
In order to extend the CAI operation range in 4-stroke mode and maximize the benefit of low fuel consumption and emissions in CAI mode, 2-stroke CAI combustion is revived operating in a GDI engine with poppet valves, where the conventional crankcase scavenging is replaced by boosted scavenging. The CAI combustion is achieved through the inherence of the 2-Stroke operation, which is retaining residual gas. A set of flexible hydraulic valve train was installed on the engine to vary the residual gas fraction under the boosting condition. The effects of spark timing, intake pressure and short-circuiting on 2-stroke CAI combustion and its emissions are investigated and discussed in this paper. Results show the engine could be controlled to achieve CAI operation over a wide range of engine speed and load in the 2-stroke mode because of the flexibility of the electro-hydraulic valvetrain system.
Technical Paper

2-Stroke Externally Scavenged Engines for Range Extender Applications

2012-04-16
2012-01-1022
In this work, the authors assess the potential of the 2-stroke concept applied to Range Extender engines, proposing 3 different configurations: 1) Supercharged, Compression Ignition; 2) Turbocharged, Compression Ignition; 3) Supercharged, Gasoline Direct Injection. All the engines feature a single power cylinder of 0.49l, external air feed by piston pump and an innovative induction system. The scavenging is of the Loop type, without poppet valves, and with a 4-stroke like lubrication system (no crankcase pump). Engine design has been supported by CFD simulations, both 1D (engine cycle analysis) and 3D (scavenging, injection and combustion calculations). All the numerical models used in the study are calibrated against experiments, carried out on engines as similar as possible to the proposed ones.
Technical Paper

3 - Valve Stratified Charge Engines: Evolvement, Analysis and Progression

1974-02-01
741163
A historical review of the patents and literature pertaining to 3-valve stratified charge engines is presented in this paper. This very old invention appears to be a practical approach for the “clean engine” being sought for vehicular use since it has the intrinsic capability of simultaneously giving good fuel economy and producing minimal objectionable exhaust emissions. The prime requisites of this engine are a rich prechamber charge and a very lean main chamber charge regardless of prechamber volume, nozzle diameter, valving and spark plug location. Fuel-air equivalence ratios of the charges in the two combustion chambers are significantly important in order to achieve the proper optimization. These ratios should be about 15% rich for the prechamber and 15 to 30% lean for the main chamber at the moment of ignition.
Technical Paper

3-Dimentional Numerical Transient Simulation and Research on Flow Distribution Unevenness in Intake Manifold for a Turbocharged Diesel Engine

2024-04-09
2024-01-2420
The design of engine intake system affects the intake uniformity of each cylinder of the engine, which in turn has an important impact on the engine performance, the uniform distribution of EGR exhaust gas and the combustion process of each cylinder. In this paper, the constant-pressure supercharged diesel engine intake pipe is used as the research model to study the intake air flow unevenness of the intake pipe of the supercharged diesel engine. The pressure boundary condition at the outlet of each intake manifold is set as the dynamic pressure change condition. The three-dimensional numerical simulation of the transient flow process in the intake manifold of diesel engine is simulated and analyzed by using numerical method, and the change of the Intake air flow field in the intake manifold under different working conditions during the intake overlapping period is discussed.
Technical Paper

430LNb - A New Ferritic Wire for Automotive Exhaust Applications

2000-03-06
2000-01-0314
The increasing use of ferritic stainless steels (AISI 409, 439, 436 and 441) in automotive exhaust systems, especially for manifolds and catalytic converter canning, has led the authors to develop a new ferritic welding wire, designated 430LNb. This new material is recommended for the GMAW and GTAW processes and provides better metallurgical compatibility with the ferritic base metals, in terms of both thermal expansion and microstructure. The composition of the new welding wire has been adjusted in order to guarantee an entirely ferritic structure in the welds of ferritic sheet materials, together with good resistance of the welds to both wet corrosion and high temperature oxidation, corresponding to the conditions encountered respectively in the colder and hotter parts of the exhaust line. This is achieved by limitation of the C (<0.02%) and N (<0.02%) contents, stabilisation with Nb, such that Nb > 0.05 + 7 (C + N) and Nb < 0.5%, and a Cr content of 17.8-18.8%.
Technical Paper

7 Experimental Research Concerning the Effect of the Scavenging Passage Length on the Combustion State and Exhaust Gas Composition of a Small Two-stroke Engine

2002-10-29
2002-32-1776
This paper presents the results of experiments conducted with a two-stroke engine that was the world's first such engine to comply with the emissions regulations applied to small off-road engines by the U.S. state of California in 2000. This engine is fitted with a scavenging passage that runs around the crankcase before the scavenging port. The aim of this research was to investigate how changes in the quantity of heat transferred to the fresh air as a result of varying the length of the scavenging passage would affect the state of combustion and exhaust gas composition. An ion probe was fitted to the end zone of the combustion chamber in order to detect the state of combustion. A voltage of 60 V was applied to the ion probe and measurements were made of the voltage drop that occurred due to the presence of high concentrations of ions (H3O+, C3H3+, CHO+, etc.) at the flame front.
Technical Paper

A 1D Real-Time Engine Manifold Gas Dynamics Model Using Orthogonal Collocation Coupled with the Method of Characteristics

2019-04-02
2019-01-0190
In this paper, a new solution method is presented to study the effect of wave propagation in engine manifolds, which includes solving one-dimensional models for compressible flow of air. Velocity, pressure, and density profiles are found by solving a system of non-linear Partial Differential Equations (PDEs) in space and time derived from Euler’s equations. The 1D model includes frictional losses, area change, and heat transfer. The solution is traditionally found by utilizing the Method of Characteristics and applying finite difference solutions to the resulting system of ordinary differential equations (ODEs) over a discretized grid. In this work, orthogonal collocation is used to solve the system of ODEs that is defined along the characteristic curves. Orthogonal polynomials are utilized to approximate velocity, pressure, sound speed, and the characteristic curves along which the system of PDEs reduce to a system of ODEs.
Technical Paper

A 50cc Two-Stroke DI Compression Ignition Engine Fuelled by DME

2008-06-23
2008-01-1535
The low auto-ignition temperature, rapid evaporation and high cetane number of dimethyl ether (DME) enables the use of low-pressure direct injection in compression ignition engines, thus potentially bringing the cost of the injection system down. This in turn holds the promise of bringing CI efficiency to even the smallest engines. A 50cc crankcase scavenged two-stroke CI engine was built based on moped parts. The major alterations were a new cylinder head and a 100 bar DI system using a GDI-type injector. Power is limited by carbon monoxide emission but smoke-free operation and NOx < 200ppm is achieved at all points of operation.
Technical Paper

A BASIC AIRBAG MODEL

1972-02-01
720426
A mathematical simulation of the operation of a compressed-gas airbag system is developed. A system was built and tested, and the analysis is evaluated on the basis of these tests. Included in the study are nonideal gas effects, manifold and diffuser effects, bag stretch, bag leakage, and overpressurization of the passenger compartment. Interaction between a single rigid object and the bag is also considered. A correlation between bag pressure and the force it generates is obtained. This allows the development of an analytic model for determining the motion of a single rigid mass interacting with a dynamically inflating airbag mounted in a moving vehicle. An application of the model to study rebound of the occupant from the airbag is presented.
Technical Paper

A Basic Study on Reduction of Cylinder Block Vibrations for Small Diesel Cars

2000-03-06
2000-01-0527
The production unit number of small diesel engine cars tends to decline except recreational vehicles in Japanese market in recent years, while the production unit number in Europe market keeps on increasing owing to the merits of the durability and the fuel consumption. The small diesel engines will have to be improved in the near future by solving major problems such as noise and vibration pollution, environmental pollution, improvement in performance of diesel engines, in order to expand the production of the engines. This paper refers to a basic study on the experimental and analytical methods for the reduction of resonant vibration in each vibration mode on some cylinder blocks of small high-speed diesel engines in rated engine speed range. Hammering test method, which is easy and useful for measuring frequency response functions, is carried out in the experiments.
Journal Article

A CFD Study of Fuel Evaporation and Related Thermo-fluid Dynamics in the Inlet Manifold, Port and Cylinder of the CFR Octane Engine

2012-09-10
2012-01-1715
Knock in Spark Ignited (SI) engines has received significant research attention historically since this phenomenon effectively restricts the compression ratio and hence the thermal efficiency of the engine. The latent heat of vaporization (LHV) of a fuel affects its knock resistance in production engines as well as affecting its Research Octane Number (RON) rating. The reason for this is that evaporative cooling of the fuel lowers in-cylinder gas temperatures resulting in reduced tendency for end-gas auto-ignition. Controlling of the fuel-air mixture temperature to 422 K at the inlet port as per the Motor Octane Number (MON) test method ensures full evaporation of the liquid fuel, and hence LHV is assumed to have little effect during this procedure. LHV therefore has a strong influence on a fuel's Octane Sensitivity (OS) - the difference between its RON and MON values.
Technical Paper

A Combustion Correlation for Spark-Ignition Engine Simulation Under Steady and Transient Conditions

1990-09-01
901602
A Spark-ignition combustion correlation is presented that links the fuel burning rate with in-cylinder vaules of temperature, pressure, fuel-air equivalance ratio, speed, ignition timing and residual gas-fraction. The correlation is designed to be used in a multi-cylinder engine simulation to study the influence of manifold, valve, supercharging and turbocharging systems design on performance. It is shown how the correlation permits transient performance predictions for a turbocharged engine.
Technical Paper

A Comparative Study Between 1D and 3D Computational Results for Turbulent Flow in an Exhaust Manifold and in Bent Pipes

2009-04-20
2009-01-1112
To improve today’s 1D engine simulation techniques it is important to investigate how well complex geometries such as the manifold are modeled by these engine simulation tools and to identify the inaccuracies that can be attributed to the 1D assumption. Time resolved 1D and 3D calculations have been performed on the turbulent flow through the outer runners of an exhaust manifold of a 2 liter turbocharged SI engine passenger car The total pressure drop over the exhaust manifold, computed with the 1D and 3D approach, showed to differ over an exhaust pulse. This is so even though a pressure loss coefficient correction has been employed in the 1D model to account for 3D flow effects. The 3D flow in the two outer runners of the manifold shows the presence of secondary flow motion downstream of the first major curvature. The axial velocity profile downstream of the first turn loses its symmetry. As the flow enters the second curvature a swirling motion is formed.
Technical Paper

A Comparison of Gasoline Direct Injection and Port Fuel Injection Vehicles: Part II - Lubricant Oil Performance and Engine Wear

1999-05-03
1999-01-1499
Four 1998 Mitsubishi Carismas, two equipped with direct injection (GDI) and two with port fuel injection engines (PFI) were tested in a designed experiment to determine the effect of mileage accumulation cycle, engine type, fuel and lubricant type on engine wear and engine oil performance parameters. Fuel types were represented by an unadditised base fuel meeting EEC year 2000 specifications and the same base fuel plus synthetic deposit control additive packages. Crankcase oils were represented by two types (1) a 5W-30 API SJ/ILSAC GF-2 type engine oil and (2) a 10W-40 API SH/CF ACEA A3/ B3-96 engine oil. The program showed that specific selection of oil additive chemistry may reduce formation of intake valve deposits in GDI cars.. In general, G-DI engines produced more soot and more pentane insolubles and were found to be more prone to what appears to be soot induced wear than PFI engines.
Technical Paper

A Comparison of the Effect of E85 vs. Gasoline on Exhaust System Surface Temperatures

2007-04-16
2007-01-1392
With concerns over increasing worldwide demand for gasoline and greenhouse gases, many automotive companies are increasing their product lineup of vehicles to include flex-fuel vehicles that are capable of operating on fuel blends ranging from 100% gasoline up to a blend of 15% gasoline/85% ethanol (E85). For the purpose of this paper, data was obtained that will enable an evaluation relating to the effect the use of E85 fuel has on exhaust system surface temperatures compared to that of regular unleaded gasoline while the vehicle undergoes a typical drive cycle. Three vehicles from three different automotive manufacturers were tested. The surface of the exhaust systems was instrumented with thermocouples at specific locations to monitor temperatures from the manifold to the catalytic converter outlet. The exhaust system surface temperatures were recorded during an operation cycle that included steady vehicle speed operation; cold start and idle and wide open throttle conditions.
Technical Paper

A Comprehensive 1D Model for the Simulation of a Small-Size Two-Stroke SI Engine

2004-03-08
2004-01-0999
The paper describes preliminary results of a research activity finalized to the development of a new scavenging concept for the reduction of the HC emitted by a small-size two-stroke carbureted crankcase-scavenged SI engine. Further developments of a well-established model (1Dime code) are presented, with particular emphasis on combustion and scavenging processes simulation. The rate of heat release is computed through a two-zone model, based on a “fractal” representation of the turbulent flame front. A CAD procedure evaluating, at each crank-angle and flame radius, the intersections between the flame surface and the actual combustion chamber walls, has been developed. Scavenging is modeled through an original two-zone approach which accounts for mixing and short-circuiting processes. The latter are directly related to the in-cylinder turbulent flow regime, inlet and exhaust flow velocities, and engine speed.
Technical Paper

A Comprehensive Data Generation Facility for Internal Combustion Engine Evaluation and Development

1990-02-01
900166
A super-microcomputer is utilized in an engine-dynamometer facility to create a comprehensive engine evaluation system. A unique feature of this system is the combination of experimental and modelling activities in evaluating engine designs. The system acquires engine operating conditions, emissions, and dynamic cylinder and manifold pressures via the data acquisition interface. After acquisition, the computer is also capable of providing engine model predictions from either an empirical model or a zero-dimensional thermodynamic model. The data gathering process is speed limited by the settling time of the engine-dynamometer system. The acquisition and modelling procedures are controlled by an internally developed, menu driven, software package. Features of the system include commercial relational database software for rapid storage and retrieval of acquired data and a high resolution graphics monitor for immediate display of analyzed pressure data.
Technical Paper

A Computational Analysis of Direct Fuel Injection During the Negative Valve Overlap Period in an Iso-Octane Fueled HCCI Engine

2007-04-16
2007-01-0227
This computational study compares predictions and experimental results for the use of direct injected iso-octane fuel during the negative valve overlap (NVO) period to achieve HCCI combustion. The total fuel injection was altered in two ways. First the pre-DI percent, (the ratio of direct injected fuel during the NVO period “pre-DI” to the secondary fuel supplied at the intake manifold “PI”), was varied at a fixed pre-DI injection timing, Secondly the timing of the pre-DI injection was varied while all of the fuel was supplied during the NVO period. A multi-zone, two-dimensional CFD simulation with chemistry was performed using KIVA-3V release 2 implemented with the CHEMKIN solver. The simulations were performed during the NVO period only.
Technical Paper

A Computational Study on the Effect of Injector Location on the Performance of a Small Spark-Ignition Engine Modified to Operate under the Direct-Injection Mode

2020-04-14
2020-01-0286
In a direct-injection (DI) engine, charge motion and mixture preparation are among the most important factors deciding the performance and emissions. This work was focused on studying the effect of injector positioning on fuel-air mixture preparation and fuel impingement on in-cylinder surfaces during the homogeneous mode of operation in a naturally aspirated, small bore, 0.2 l, light-duty, air-cooled, four-stroke, spark-ignition engine modified to operate under the DI mode. A commercially available, six-hole, solenoid-operated injector was used. Two injector locations were identified based on the availability of the space on the cylinder head. One location yielded the spray-guided (SG) configuration, with one of the spray plumes targeted towards the spark plug. In the second location, the spray plumes were targeted towards the piston top in a wall-guided (WG) configuration so as to minimize the impingement of fuel on the liner.
X