Refine Your Search

Topic

Author

Affiliation

Search Results

Event

2024-04-28
Event

2024-04-28
Event

2024-04-28
Event

2024-04-28
Event

2024-04-28
Event

2024-04-28
Event

2024-04-28
Event

2024-04-28
Event

2024-04-28
Technical Paper

0D/3D Simulations of Combustion in Gasoline Engines Operated with Multiple Spark Plug Technology

2015-04-14
2015-01-1243
A simulation method is presented for the analysis of combustion in spark ignition (SI) engines operated at elevated exhaust gas recirculation (EGR) level and employing multiple spark plug technology. The modeling is based on a zero-dimensional (0D) stochastic reactor model for SI engines (SI-SRM). The model is built on a probability density function (PDF) approach for turbulent reactive flows that enables for detailed chemistry consideration. Calculations were carried out for one, two, and three spark plugs. Capability of the SI-SRM to simulate engines with multiple spark plug (multiple ignitions) systems has been verified by comparison to the results from a three-dimensional (3D) computational fluid dynamics (CFD) model. Numerical simulations were carried for part load operating points with 12.5%, 20%, and 25% of EGR. At high load, the engine was operated at knock limit with 0%, and 20% of EGR and different inlet valve closure timing.
Technical Paper

1-D Modeling of Transient Engine Operations Using Data Generated by a CFD Code

2008-04-14
2008-01-0357
Transient engine operations are modeled and simulated with a 1-D code (GT Power) using heat release and emission data computed by a 3-D CFD code (Kiva3). During each iteration step of a transient engine simulation, the 1-D code utilizes the 3-D data to interpolate the values for heat release and emissions. The 3-D CFD computations were performed for the compression and combustion stroke of strategically chosen engine operating points considering engine speed, torque and excess air. The 3-D inlet conditions were obtained from the 1-D code, which utilized 3-D heat release data from the previous 1-D unsteady computations. In most cases, only two different sets of 3-D input data are needed to interpolate the transient phase between two engine operating points. This keeps the computation time at a reasonable level. The results are demonstrated on the load response of a generator which is driven by a medium-speed diesel engine.
Technical Paper

1-D Simulation Model Developed for a General Purpose Engine

2016-11-08
2016-32-0030
In recent years, improvements in the fuel economy and exhaust emission performance of internal combustion engines have been increasingly required by regulatory agencies. One of the salient concerns regarding general purpose engines is the larger amount of CO emissions with which they are associated, compared with CO emissions from automobile engines. To reduce CO and other exhaust emissions while maintaining high fuel efficiency, the optimization of total engine system, including various design parameters, is essential. In the engine system optimization process, cycle simulation using 0-D and 1-D engine models are highly useful. To define an optimum design, the model used for the cycle simulation must be capable of predicting the effects of various parameters on the engine performance. In this study, a model for predicting the performance of a general purpose SI (Spark Ignited) engine is developed based on the commercially available engine simulation software, GT-POWER.
Technical Paper

15 Combustion Characteristics of an Improved Design of a Stratified Charge Spark Ignition Engine

2002-10-29
2002-32-1784
The characteristics of the combustion process in an improved design of a novel spark ignition engine studied by means of Computational Fluid Dynamics are presented. The engine is designed to work at low average combustion temperatures to achieve very low NOx emissions. The engine is a two-stroke, two piston in-line engine. The main combustion occurs in four combustion pre-chambers that have an annular shape with a nozzle on the side facing the cylinder. Fuel is directly injected into the pre-chambers by using high-pressure fuel injectors. A progressive burning process is expected to keep the flame inside the pre-chambers while the fast ejection of combustion products should produce effective mixing with the cold air in the cylinder. This fast dilution should guarantee a temperature drop of the combustion products thus reducing the formation of NOx via a thermal path.
Technical Paper

15 Years of Transfer Path Analysis VINS in the Vehicle NVH Development - Selected Results

2014-06-30
2014-01-2047
Transfer path analysis is a powerful tool to support the vehicle NVH development. On the one hand it is a fast method to gain an overview of the complex interplay in the vehicle noise generation process. On the other hand it can be used to identify critical noise paths and vehicle components responsible for specific noise phenomena. FEV has developed several tools, which are adapted to the considered noise phenomena: Powertrain induced interior noise and vibration is analyzed by VINS (Vehicle Interior Noise Simulation), which allows the deduction of improvement measures fast enough for application in the accelerated vehicle development process. Further on vehicle/powertrain combinations not realized in hardware can be evaluated by virtual installation of the powertrain in the vehicle, which is especially interesting in the context of engine downsizing from four to three or six to four cylinders.
Technical Paper

1997 GM 5.7 LITER LS1 V8 ENGINE

1997-02-24
970915
General Motors Powertrain Group (GMPTG) has developed an all new small block V8 engine, designated LS1, for introduction into the 1997 Corvette. This engine was designed to meet both customer requirements and competitive challenges while also meeting the ever increasing legislated requirements of emissions and fuel economy. This 5.7L V8 provides increased power and torque while delivering higher fuel economy. In addition, improvements in both QRD and NVH characteristics were made while meeting packaging constraints and achieving significant mass reductions.
Technical Paper

1D Modeling of AC Refrigerant Loop and Vehicle Cabin to Simulate Soak and Cool Down

2013-04-08
2013-01-1502
Simulation has become an integral part in the design and development of an automotive air-conditioning (AC) system. Simulation is widely used for both system level and component level analyses and are carried out with one-dimensional (1D) and Computational Fluid Dynamics (CFD) tools. This paper describes a 1D approach to model refrigerant loop and vehicle cabin to simulate the soak and cool down analysis. Soak and cool down is one of the important tests that is carried out to test the performance of a heating, ventilation and air-conditioning (HVAC) system of a vehicle. Ability to simulate this cool down cycle is thus very useful. 1D modeling is done for the two-phase flow through the refrigerant loop and air flow across the heat exchangers and cabin with the commercial software AMESim. The model is able to predict refrigerant pressure and temperature inside the loop at different points in the cycle.
Journal Article

1D Numerical and Experimental Investigations of an Ultralean Pre-Chamber Engine

2019-11-19
Abstract In recent years, lean-burn gasoline Spark-Ignition (SI) engines have been a major subject of investigations. With this solution, in fact, it is possible to simultaneously reduce NOx raw emissions and fuel consumption due to decreased heat losses, higher thermodynamic efficiency, and enhanced knock resistance. However, the real applicability of this technique is strongly limited by the increase in cyclic variation and the occurrence of misfire, which are typical for the combustion of homogeneous lean air/fuel mixtures. The employment of a Pre-Chamber (PC), in which the combustion begins before proceeding in the main combustion chamber, has already shown the capability of significantly extending the lean-burn limit. In this work, the potential of an ultralean PC SI engine for a decisive improvement of the thermal efficiency is presented by means of numerical and experimental analyses.
Technical Paper

1D Simulation Accuracy Enhancement for Predicting Powertrain Cooling System Performance

2019-01-09
2019-26-0298
In today’s competitive scenario, the automotive product life cycle has drastically reduced and all Auto OEM’s are coming up with their updated products with lesser development time. These frequent product upgrades are possible due to use of various digital tools during product design and development. Design and optimization of engine coolpack (powertrain cooling unit) to attain engine cooling performance is one of the important parameter during vehicle development or upgrade. Hence, to keep control over development cost and time of delivery, quick and accurate digital validation capability like one dimensional (1D) simulation is the need of the hour. To predict the powertrain cooling (PTC) performance at vehicle concept stage, when physical prototypes are not available, airflow data from similar developed platforms is considered as an input for 1D simulation.
Technical Paper

1D Simulation-Based Methodology for Automotive Grill Opening Area Optimization

2021-09-15
2021-28-0133
This paper discusses the methodology setup for grill opening area prediction at the early development phase of the product development lifecycle, using a commercially available 1D simulation tool- AMESIM. Representative under hood has been modeled using Grill, Condenser, Radiator, intercooler, fan, and engine components. Vehicle velocity is used as an input to derive the airflow passing through the grill and other under-hood components based on ram air coefficient, pressure drop through different components (Grill, Heat exchanger, Fan & Engine). This airflow is used to predict the top tank temperature of the radiator. Derived airflow is correlated with airflow obtained from CFD simulation. A balance has been achieved between cooling drag & fan power consumption at different grill opening areas for target top tank temperature. Top tank temperature has been predicted at two different extreme engine heat rejection operating points.
Technical Paper

1D and 3D CFD Investigation of Burning Process and Knock Occurrence in a Gasoline or CNG fuelled Two-Stroke SI Engine

2011-11-08
2011-32-0526
The paper presents a combined experimental and numerical investigation of a small unit displacement two-stroke SI engine operated with gasoline and Natural Gas (CNG). A detailed multi-cycle 3D-CFD analysis of the scavenging process is at first performed in order to accurately characterize the engine behavior in terms of scavenging patterns and efficiency. Detailed CFD analyses are used to accurately model the complex set of physical and chemical processes and to properly estimate the fluid-dynamic behavior of the engine, where boundary conditions are provided by a in-house developed 1D model of the whole engine. It is in fact widely recognized that for two-stroke crankcase scavenged, carbureted engines the scavenging patterns (fuel short-circuiting, residual gas distribution, pointwise lambda field, etc.) plays a fundamental role on both of engine performance and tailpipe emissions.
X