Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

"Quattro"-Drive for Every Day Driving

1984-01-01
845070
An essential feature of the Audi Quattro permanent four-wheel drive system is in the inter-axle differential located on the hollow output shaft in the gearbox: the drive is taken from this differential forward to the front differential through the inside of the hollow shaft, and rearward to a propellor shaft driving the rear differential. The major advantages in everyday driving include improved traction and a reduced tendency toward throttle induced changes of attitude. The greater traction allows not only better progress in difficult road conditions; it also gives better acceleration in difficult traffic situations, such as when joining a busy main road. The more easily predictable handling response to throttle changes means that Quattro vehicles have better tracking stability. Altogether, the active safety and "roadability" are considerably improved.
Technical Paper

1958 Chevrolet LEVEL AIR SUSPENSION

1958-01-01
580049
CHEVROLET has made its new air-suspension system easily interchangeable in production line assembly with standard full-coil suspension by adopting a 4-link-type rear suspension with short and long arms. A feature of the system is the mounting of the leveling valves within the air-spring assemblies. These valves correct riding height continually at a moderate rate, regardless of whether the springs are leveling or operating in ride motion. The system provides constant frequency ride—ride comfort remains the same whether the car is occupied by the driver alone or is fully loaded.
Technical Paper

2-Way Driven Compressor for Hybrid Vehicle Climate Control System

2004-03-08
2004-01-0906
The environment is one of the most important issues currently facing the world and the automobile industry is required to respond with eco-cars. To meet this requirement, the hybrid vehicle is one of the most optimal solutions. The hybrid system automatically stops engine idling (idling stop), or stops the engine during deceleration to recover energy. The engine stop however creates a problem concerning the vehicle's climate control system. Because the conventional climate control system incorporates a compressor driven by engine belt, there is almost no cooling performance while the engine is stopped. Until now, when a driver needed more cooling comfort the engine has been switched back on as a compromise measure. To realize cabin comfort that is consistent with fuel saving, a 2-way driven compressor has been developed that can be driven both by engine belt while the engine is running and by electric motor when the engine is stopped.
Technical Paper

20 A Combined Experimental and Numerical Approach for Motorcycle Crank Noise: Experimental Validation

2002-10-29
2002-32-1789
The demands for comfort and a cleaner environment have been increasing for the past years for motorcycle as well as car manufacturers. With the need to decrease the time-to-market, there is a clear drive to apply CAE-based methods in order to evaluate new designs and to propose design changes that solve any identified problems. More specifically, the demands on the comfort of the rider are not only related to ride & handling and vibration levels(1), but also to the noise levels generated by the motorcycle. This paper presents the virtual modeling of one-cylinder engine of a motorcycle that identifies the mechanism behind the generation of an annoying noise. Furthermore, different possible design changes were evaluated in order to solve the problem. A combined experimental and numerical approach was followed to achieve this. Experiments were used to identify important parameters that determine the engine behavior and thus are critical for the modeling of such an engine.
Journal Article

26,500km Down the Pan-American Highway in an Electric Vehicle A Battery's Perspective

2012-04-16
2012-01-0123
This paper presents a novel battery degradation model based on empirical data from the Racing Green Endurance project. Using the rainflow-counting algorithm, battery charge and discharge data from an electric vehicle has been studied in order to establish more reliable and more accurate predictions for capacity and power fade of automotive traction batteries than those currently available. It is shown that for the particular lithium-iron phosphate (LiFePO₄) batteries, capacity fade is 5.8% after 87 cycles. After 3,000 cycles it is estimated to be 32%. Both capacity and power fade strongly depend on cumulative energy throughput, maximum C-rate as well as temperature.
Technical Paper

3-Dimensional Simulation of Vehicle Response to Tire Blow-outs

1998-02-23
980221
Sudden tire deflation, or blow-out, is sometimes cited as the cause of a crash. Safety researchers have previously attempted to study the loss of vehicle control resulting from a blow-out with some success using computer simulation. However, the simplified models used in these studies did little to expose the true transient nature of the handling problem created by a blown tire. New developments in vehicle simulation technology have made possible the detailed analysis of transient vehicle behavior during and after a blow-out. This paper presents the results of an experimental blow-out study with a comparison to computer simulations. In the experiments, a vehicle was driven under steady state conditions and a blow-out was induced at the right rear tire. Various driver steering and braking inputs were attempted, and the vehicle response was recorded. These events were then simulated using EDVSM. A comparison between experimental and simulated results is presented.
Technical Paper

3D Head Models for Protective Helmet Development

2003-06-17
2003-01-2176
In order to improve the fit and comfort of helmets, we developed digital head models that represent the anthropometric and morphometric variability found in the U.S. Navy. We analyzed the size and shape variation using two related approaches. First, we used Procrustes superimposition, which minimizes the distances between all landmarks of all subjects. This allowed us to visualize the variation in landmark distribution of the face and to test for statistical differences. Second, we extracted curvatures along the surface of the head. This allowed us to characterize the variation in the shape of the head. To create a series of sized digital models, we used principal component analysis (PCA) to organize the variation in both the traditional measurements as well as the locations of the 3D landmarks. Using an adaptation of multivariate accommodation modeling we identified representative individuals who characterize 95% of the variation in size and shape.
Technical Paper

3D Simulation Methodology to Predict Passenger Thermal Comfort Inside a Cabin

2021-09-15
2021-28-0132
The vehicle Heating, Ventilation and Air conditioning (HVAC) system is designed to meet both the safety and thermal comfort requirements of the passengers inside the cabin. The thermal comfort requirement, however, is highly subjective and is usually met objectively by carrying out time dependent mapping of parameters like the velocity and temperature at various in-cabin locations. These target parameters are simulated for the vehicle interior for a case of hot soaking and its subsequent cool-down to test the efficacy of the AC system. Typically, AC performance is judged by air temperature at passenger locations, thermal comfort estimation along with time to reach comfortable condition for human. Simulating long transient vehicle cabin for thermal comfort evaluation is computationally expensive and involves complex cabin material modelling.
Technical Paper

3D Simulation of Soot Loading and Regeneration of Diesel Particulate Filter Systems

2007-04-16
2007-01-1143
A novel CFD simulation technique has been developed that unites realistic three-dimensional resolution of diesel particulate filter systems with computational efficiency. Three-dimensional resolution of the thermofluiddynamic behaviour during transient soot loading and regeneration is necessary for the optimization of the function, durability, weight and cost of DPF systems. Computational efficiency is required to allow its use as a standard development tool during all engineering phases and to allow the simulation of driving cycles. The detailed conclusions that can be drawn about soot distribution and thermal characteristics during the regeneration assist in ensuring the DPF function and avoiding DPF failures over the operational lifetime.
Technical Paper

4-Wheel-Drive Tractors From John Deere “Concepts 1982”

1981-09-01
810913
Today's agri-businessman is challenged to improve his efficiency to meet higher operating costs and to counter the effects of inflation. New concepts in John Deere's line of 4-wheel-drive tractors are targeted toward this goal and provide increased productivity through power increases, improved fuel economy, comfortable convenient operator environment and controls, increased hydraulic power, improved serviceability and repairability and monitoring of more critical vehicle functions.
Technical Paper

42 V Electric Air Conditioning Systems (E-A/CS) for Low Emissions, Architecture, Comfort and Safety of Next Generation Vehicles

2001-08-20
2001-01-2500
Electrical Air Conditioning Systems for 42 V vehicles will provide many benefits in terms of Environment protection, car Architecture, cabin Comfort and overall Safety. E-A/C Systems essentially differ from conventional ones by the use of electrical compressors. First of all, they will be particularly well adapted to new powertrains, helping to make them more environmentally friendly. Accurate control and high efficiency under the most common thermal conditions will reduce the A/C impact on fuel consumption. Besides, higher sealing integrity will cut emissions of refrigerant during normal operation and maintenance. Secondly, the use of an electrically driven compressor (EDC) will suppress a belt, and will reduce the packaging constraints. This will help to design new vehicle architectures. Thirdly, the electrification of air conditioning will allow better thermal comfort. In particular, E-A/C Systems provide a good opportunity for cabin pre-conditioning.
Technical Paper

4WS Technology and the Prospects for Improvement of Vehicle Dynamics

1990-10-01
901167
FOUR-WHEEL STEERING (4WS) is beginning to find widespread use as a new approach to improving vehicle dynamics, especially in the medium and high speed ranges. Steering the rear wheels in the same phase as the front wheels enhances vehicle stability. Four-wheel steering systems have an even greater potential to improve stability and steering response through suitable control over the transient characteristics of the rear wheel steer angle. This paper traces the course of Nissan research and development work on four-wheel steering and the evolution of Nissan's HICAS (4WS) technology. It also describes research activities under way on vehicle dynamics using a newly developed Simulator Vehicle, equipped with a front and rear angle transient control system which makes it possible to vary the dynamic characteristics of the vehicle instantaneously and at will while driving.
Technical Paper

520 Bobcat Designed for Improved Serviceability

1976-02-01
760404
A new compact skid steer loader has been developed. Along with productivity and cost, the design of this loader was concentrated on improving ease of operation, operator comfort and safety, and serviceability. This paper discusses how serviceability was improved over previous model Bobcats. That is; improved accessibility to regulary serviced items, reduced service parts and improved reliability.
Technical Paper

57 2- (3)-Cylinder Concepts for High Output Motorcycles and Commuter

2002-10-29
2002-32-1826
Four new 2-cylinder 4-stroke concepts are displayed as design and fitted in vehicles. These four different concepts comprise a Modular Concept V2- and W3-cylinder a MotoGP / Superbike concept with 2 and 3 cylinders, a narrow angle V-engine and a Building Block System Commuter CVT engine. Each engine concept is designed to meet the different requirements of the four segments. Specific analysis and simulation concerning 1D thermodynamics, vehicle simulation and delivered performance and tractive force was done for each concept. The concepts are compared in the aspects of uniform rotation, inertia forces and moments, and the effect on performance by the pulse effects of the manifolded intake and exhaust systems. The Modular Concept contains an OHC engine with a wide range of displacements and commonality of many parts. Good versatility is obtained as the concepts can be applied for sport- or custom bikes.
Journal Article

6 DOF Bench Test on a New Active Kinematics Rear Suspension for Functional Development

2012-04-16
2012-01-0550
To optimize the tyre contact patch in a sports car, Ferrari has developed an active camber and toe (ACT) system comprising of 4 actuators for the rear axle. This complex and completely new system is difficult to model accurately and for this reason, it was decided to combine a physical prototype with a full vehicle model to carry out the functional tests. The method of combining a virtual model with a physical test is known as hybrid simulation. This functional testing of both the actuators and the vehicle dynamics logic will be performed on an MTS 6DOF bench test prior to physical track testing on a prototype vehicle using Ferrari facility in Maranello, Italy. In support of this functional testing, we will use hybrid simulation techniques with software and methods specifically developed. The planned hybrid test system described in the paper will allow dynamic coupling between the physical bench test and a modified full vehicle simulation model.
Technical Paper

6 Speed Transverse Manual Gearbox for High Torque Application

2016-04-05
2016-01-1095
Weight reduction and high transmission efficiency demands are getting heavier to manual transmission (MT) for vehicle driving and fuel economy performance. Also comfortable shift feeling and low gear noise level are continuously required by customer because those sensitivity performances are directly recognized by driver which can determine the transmission's merchantability. Newly developed high torque capacity MT is based on serial transmission BG6 which is adopted into a lot of customer' vehicle. This new MT is weight reduced, shift feeling and gear noise performance are highly improved that keeps strong competitiveness in the future. Concerning shift feeling, its smoothness, force balance and cross shift performance are improved and optimized. Also for low gear noise performance, it was reduced to the level which can have advantage to competitor and highly comfortable for passenger vehicle. Those improvement technologies are reported as follows.
Technical Paper

64 Ergonomic Approaches to Improved Scooter Riding Comfort

2002-10-29
2002-32-1833
This paper gives a report on ergonomic approaches we tried to scooters for improvements in their riding comfort. First we conducted investigations into riding postures that offer a comfortable scooter ride. That is, we picked out major items for the evaluation of scooter riding postures and investigated a correlation between those items and their physical quantities. Our investigation revealed that room for leg and arm movements played a major role in a scooter riding posture. We further found out a high correlation between the evaluation items for legroom and the knee angles and also high correlation between the evaluation items for legroom and the ankle angle. Next we report on the result of the attempt we made at improved riding comfort by equipping the scooter seat with a backrest. To check the effects of backrest, we measured the seating pressure distribution, myogenic potential, and cardiogenic potential.
Technical Paper

6DOF RTS Drive File Development Technique for Solid-Axle-Type Rear Suspensions Instrumented for 4DOF Applications

2005-04-11
2005-01-0855
The MTS 329LT six degree-of-freedom road test simulator (6DOF RTS) provides additional controls for camber and steer moments resulting in more realistic simulation results compared with results for a 4DOF RTS. However, the 6DOF RTS requires that additional transducers be installed on the data acquisition vehicle to provide the road load information necessary to control these additional moments. Occasionally, road load data available for drive file development may not include the necessary information for controlling steer and camber moments (typically for 4DOF applications). Under such circumstances, it is still possible to develop drive files for solid-axle-type rear suspensions. A technique used to accomplish this task is presented in this paper.
Technical Paper

A 1D Method for Transient Simulations of Cooling Systems with Non-Uniform Temperature and Flow Boundaries Extracted from a 3D CFD Solution

2015-04-14
2015-01-0337
The current work investigates a method in 1D modeling of cooling systems including discretized cooling package with non-uniform boundary conditions. In a stacked cooling package the heat transfer through each heat exchanger depends on the mass flows and temperature fields. These are a result of complex three-dimensional phenomena, which take place in the under-hood and are highly non-uniform. A typical approach in 1D simulations is to assume these to be uniform, which reduces the authenticity of the simulation and calls for additional calibrations, normally done with input from test measurements. The presented work employs 3D CFD simulations of complete vehicle in STAR-CCM+ to perform a comprehensive study of mass-flow and thermal distribution over the inlet of the cooling package of a Volvo FM commercial vehicle in several steady-state operating points.
X