Refine Your Search

Search Results

Viewing 1 to 4 of 4
Technical Paper

J1939 High Speed Serial Communications, The Next Generation Network for Heavy Duty Vehicles

1993-01-09
931809
Data link interfaces are a very important part of the heavy duty vehicle industry; sharing information between subsystems is vital. SAE Recommended Practices J1708, J1587 and J1922 were developed to provide standards for proprietary communications, general information sharing, diagnostic definition and early powertrain controls. The industry realized, however, that these standards would not accomplish the ultimate goal-that of a high speed control and communications network. The development of more capable serial data communications for the heavy duty vehicle industry was prompted by the following: the desire of component suppliers to integrate subsystems for improved performance; the advancement of technology; customer expectations; and government regulations.
Technical Paper

Performance of a Ceramic Rotor in a Cummins T46 Turbocharger

1984-02-01
840014
This paper documents the successful operation of a modified Cummins T46 turbocharger with a ceramic rotor. This turbocharger is modified to incorporate a 4.6 inch diameter ceramic turbine rotor (pressureless sintered silicon nitride) on the hot end. These results document the most complete ceramic turbine rotor performance map, for a large ceramic turbocharger rotor, available to date.
Technical Paper

Selection of the Optimized Aftercooling System for Cummins Premium Diesel Engines

1984-08-01
841023
The ongoing need for improved fuel economy, longer engine life, lower emissions, and in some cases, increased power output makes lower charge air temperatures more desirable. In 1983, Cummins introduced the new BCIV engine at 400 H.P. (298 KW) with “Optimized Aftercooling”, and is now introducing this concept to its remaining 10 and 14 Litre premium diesel engines. This Tuned Low Flow Cooling design provides many advantages when compared to the other alternatives studied, which included air-to-air and systems incorporating two radiators. The selection process considered performance, durability, fuel economy, emissions, noise, investment, and total vehicle installed cost. Computer simulations and vehicle tests were used to determine performance for each charge air cooling alternative. The simulations were used to guide prototype development and the selection of production hardware.
Technical Paper

Vehicle Mission Simulation, 1970

1970-02-01
700567
Vehicle mission simulation is one component of a system designed to optimize selection and operation of on-highway vehicles. The focus of vehicle mission simulation is on equipment specification. It can predict the physical and financial performance of equipment alternatives, identify opportunities and correct problems before a truck is purchased.
X