Refine Your Search

Topic

Search Results

Viewing 1 to 11 of 11
Technical Paper

A Secondary De-Aeration Circuit for an Engine Cooling System with Atmospheric Recovery Bottle to Improve De-Aeration

2014-09-30
2014-01-2342
In any engine cooling system, de-aeration capability of the system plays a very critical role to avoid over heating of an engine. In general, with recovery bottle engine cooling system there is one vent hose from radiator pressure cap to the recovery bottle and coolant in the bottle is exposed to atmospheric pressure. From this vent hose air bubbles will move to recovery bottle from the engine and radiator when pressure in the system exceeds pressure cap setting. With this arrangement, de-aeration from the engine will happen when thermostat opens only and till that time air bubbles will be in the engine only and in this time there will be chance of overheating at some critical conditions because of air pockets in to the engine water jacket and the entrained air in the cooling circuit. Also, secondly 100 % initial filling cannot be achieved.
Technical Paper

Aerodynamic Drag Reduction of an Intercity Bus through Surface Modifications - A Numerical Simulation

2019-10-11
2019-28-0045
The maximum power produced by the Engine is utilized in overcoming the Aerodynamic resistance while the remaining has been used to overcome rolling and climbing resistance. Increasing emission and performance demands paves way for advanced technologies to improve fuel efficiency. One such way of increasing the fuel efficiency is to reduce the aerodynamic drag of the vehicle. Buses emerged as the common choice of transport for people in India. By improving the aerodynamic drag of the Buses, the diesel consumption of a vehicle can be reduced by nearly about 10% without any upgradation of the existing engine. Though 60 to 70 % of pressure loads act on the frontal surface area of the buses, the most common techniques of reducing the drag in buses includes streamlining of the surfaces, minimizing underbody losses, reduced frontal area, pressure difference between the front & rear area and minimizing of flow separation & wake regions.
Technical Paper

Application of Reliability Technique for Developing a Test Methodology to Validate the Engine Mounted Components for Off-Road Applications under Vibration

2017-09-29
2017-01-7004
Vibrational fatigue is a metal fatigue caused by the forced vibrations which are purely random in nature. The phenomenon is predominantly important for the components/systems which are subjected to extreme vibration during its operation. In a vehicle, an engine is the main source of vibration. The vibrational fatigue, therefore, plays a key role in the deterioration of engine mounted components. Multiple test standards and methodologies are available for validating engine mounted parts of an automobile. These might not be appropriate in the case of an off- road vehicle as the vibrational exposure of engine mounted components of an off-road vehicle is entirely different. In the case of an off-road vehicle, the engine mounted components are subjected to a comparatively higher level of vibration for a longer duration of time as compared to the passenger cars.
Technical Paper

Cost Efficient Bharat (Trem) Stage IV Solutionsfor TractorEngines

2015-01-14
2015-26-0092
India's high Air Pollution level is the focus of discussions as we grow. Plans to combat this menace and implement the latest Technologies are gathering pace. The increasingly stringent emission legislations provide a continuous challenge for the non-road market. Tractor manufacturers are evaluating the need for cost-effective technology to meet upcoming stringent emissions targets. Simply following global approach may not work for Indian market considering the customer usage pattern & perceptions. With an anticipation of upcoming emission norms being based on US-EPA TIER-4 final up to 75 Hp, major technology up gradation is expected for farm equipment sold in India. The enormous diversification of engines within the different power classes as well as the operation specific requirements regarding various duty cycles, robustness and durability, requires specific solutions to meet these legal limits.
Technical Paper

Development of Sensor Based Rotavator Unit For Display of Operational Parameters on Various Soil Conditions

2021-09-22
2021-26-0091
Rotavator is an active tillage implement for breaking the Soil and for the preparation of seed bed for cultivation. The Farmers are currently facing problem due to usage of sub optimal speed of Rotavator which results in more fuel consumption, takes more time for completion of operation. Also, the Current Rental models work on Tractor + Implement as rental combination and customer not able to rent Rotavator as a standalone implement due to non-availability of Tracking information such as hours of utilization on Rotavator. Farmers not able to maintain the service periodicity, if oil change not done in prescribed duration then it may result in improper maintenance and breakdown of the Rotavator. To overcome these problems a smart Rotavator developed consists of an electronic unit fitted on the Rotavator shaft to measure the speed of the shaft rotation and in turn convert to Rotavator speed and also able to convert into Hours of usage based on the starting and stopping of the rotavator.
Technical Paper

Development of an all Speed Governed Diesel-CNG Dual Fuel Engine for Farm Applications

2021-09-22
2021-26-0101
This paper discusses the development of an all speed governed diesel-natural gas dual fuel engine for agricultural farm tractor. A 45 hp, 2.9 liters diesel-natural gas dual fuel engine with a novel closed loop secondary fuel injection system was developed. A frugal approach without any modification of the base mechanical diesel fuel injection system was followed. This approach helped to minimize the cost impact, while meeting performance and emissions at par with neat diesel operation. Additional cost on gas injection system is redeemed by cost savings on diesel fuel. The dual fuel technology developed by Mahindra & Mahindra Ltd., substitutes on an average approximately 40% of diesel with compressed natural gas, meeting the TREM III A emission norms for dual fuel while meeting all application requirements. The governing performance of the tractor was found to be superior than base diesel tractor.
Technical Paper

Durability Analysis Methodology of Tractor Hydraulic Bell Crank Assembly for Various Agricultural Operations

2017-01-10
2017-26-0235
A tractor is vehicle specifically designed to deliver a high tractive effort at slow speeds for carrying out various agriculture operations like ploughing, rotavation etc. using implement. Hydraulic system is a key feature which connects these implements with the tractor. It controls the position and draft of the implement depending upon the type of crop, farming stage, implement type and soil conditions. These variations induces extreme range of load on the hydraulic system, thus making it challenging to design these components. Bell crank assembly is one of the main components of hydraulic system which controls the draft (thus, the loads experienced by tractor) through load sensing mechanism. Often bell crank assembly failures are reported from field due to uneven soil hardness and presence of rocks. This paper studies one of such bell crank assembly failures in the field. The failure was reported after half life cycle of usage during agriculture Operation.
Technical Paper

Estimation of Temperature and Velocity Uniformity of Exhaust Gases in Heavy Commercial Vehicle Exhaust System having SCR After Treatment Technology

2016-02-01
2016-28-0112
For meeting upcoming BS IV & BS V emission norms in Heavy Commercial Vehicles, most of the manufacturers are taking SCR after treatment route. Though SCR system is more complex and involves higher cost impact, an optimized SCR system can bring down the payback period to about one year due to improved fuel economy. For development of an SCR after treatment system, selection of a correct SCR catalyst and its position in the system is very important. NOX conversion efficiency of catalyst depends on exhaust gas temperature at the catalyst and the velocity distribution over the face of the catalyst. Generally catalysts are evaluated for the conversion efficiency in engine test bed. In a drive to have a first-time-right solution, a CFD analysis was carried out considering the low and high flow rate conditions. CFD simulation models and the corresponding results were used as a predictive tool in the exhaust system development process.
Technical Paper

Fixed High Ground Clearance Tractor

2024-01-16
2024-26-0063
Row-crop intercultural activities are widely affected by unavailability of manpower & seasonal nature. Current tractors with lower ground clearance are unable to access field after certain crop stage, may damage crop after certain growth. Some limited mechanization options available (self-propelled boom sprayer) are of higher cost. Crop care activities are intensive and observed consistent increase in cost. To address these challenges and unlock significant business benefits, a novel retro-fit height attachment for tractors has been developed. This attachment empowers tractors to access row-crop fields with crops standing at a height of up to 3 feet, effectively eliminating ground clearance constraints. The benefits of this innovative solution include enhanced accessibility, cost-effective mechanization, heightened operational efficiency, crop preservation, and improved sustainability.
Technical Paper

Gear Shift Pattern Optimization for Best Fuel Economy, Performance and Emissions

2020-04-14
2020-01-1280
As the FTP-75 drive cycle does not have a prescribed gear shift pattern, automotive OEMs have the flexibility to design. Conventionally, gear shift pattern was formulated based on trial and error method, typically with 10 to 12 iterations on chassis dynamometer. It was a time consuming (i.e. ~ 3 to 4 months) and expensive process. This approach led to declaring poor fuel economy (FE). A simulation procedure was required to generate a gear shift pattern that gives optimal trade-off amongst conflicting objectives (FE, performance and emissions). As a result, a simulation tool was developed in MATLAB to generate an optimum gear shift pattern. Three different SUV/UV models were used as test vehicles in this study. Chassis dyno testing was conducted, and data was collected using the base and optimized gear shift patterns. Dyno test results with optimized gear shift pattern showed FE improvement of ~ 4 to 5% while retaining the NOx margin well above engineering targets.
Technical Paper

Implementation and Experimentation of Effective Clog Removal Method in Tractors for Enhanced Condenser Life and Air Conditioning Performance During Reaper Application

2019-10-11
2019-28-0015
Tractors in the field are exposed to adverse operating conditions and are surrounded by dust and dirt. The tiny, thin and sharp broken straw and husks surround the system in reaper operation. The tractors which are equipped with air conditioning system tend to show detrimental effects in cooling performance. The compressor trips frequently by excess pressure developed in the system due to condenser clogging and hence cooling performance is reduced considerably. The air conditioning performance reduces due to the clogged condenser located on the top roof compartment of operator’s cabin, which is better design than keeping in front of radiator where clogging happens every hour and customer need to stop the tractor to clean it with specific blower.
X