Refine Your Search

Search Results

Viewing 1 to 5 of 5
Technical Paper

Approach to Control the in Cab Noise without Affecting Passenger Comfort in AC Midi Buses

2015-01-14
2015-26-0125
This paper discusses various fruitful iterations / experiments performed to reduce air flow induced noise without compromising on total air flow requirement for thermal comfort and ways to avoid heat ingress inside the bus. Also the paper discusses the devised process for noise reduction through front loading of computer aided engineering and computational fluid dynamics analysis. Air conditioning buses in light commercial vehicle (LCV) segment is growing market in India, especially for applications like staff pick-up and drop, school applications and private fleet owners. The air-conditioning system is typically mounted on bus roof top and located laterally and longitudinally at center. It is an easiest and most feasible way to package air conditioning system to cater the large passenger space (32 to 40 seats) with the conditioned air. This makes air conditioning duct design simple and commercially viable.
Technical Paper

Clutch Hysteresis Maximization for Elimination of Gear Rattle in a Passenger Bus

2013-01-09
2013-26-0100
The acceptable noise and vibration performance is one of the most important requirements in a passenger bus as it is intended for widest spectrum of passengers covering all age groups. Gear rattle, being one of the critical factors for NVH and durability, plays a vital role in passenger comfort inside vehicle. The phenomenon of gear rattle happens due to irregularity in engine torque, causing impacts between the teeth of unloaded gear pairs of a gearbox which produce vibrations giving rise to this unacceptable acoustic response. In depth assessment of the dynamic behavior of systems and related components required to eliminate gear rattle. During normal running conditions, abnormal in-cab noise was perceived in a bus. Initial subjective evaluation revealed that the intensity was high during acceleration and deceleration. Objective measurements and analysis of the in-cab noise and vibration measurements had indicated that the noise is mainly due to gear rattling.
Technical Paper

Development of Advanced Signal Analysis Technique for Pass-by Noise Source Identification of Light Commercial Vehicle

2024-01-16
2024-26-0201
The auto industry is one of the major contributors for noise pollution in urban areas. Specifically, highly populated heavy commercial diesel vehicle such as buses, trucks are dominant because of its usage pattern, and capacity. This noise is contributed by various vehicle systems like engine, transmission, exhaust intake, tires etc. When the pass by noise levels exceeds regulatory limit, as per IS 3028, it is important for NVH automotive engineer to identify the sources & their ranking for contribution in pass by noise. The traditional methods of source identification such as windowing technique, sequential swapping of systems and subsystems which are time consuming.Also advanced method in which data acquisition with a synchronizing technology like telemetry or Wi-Fi for source ranking are effective for correctness.However they are time and resource consuming, which can adversely impact product development timeline.
Technical Paper

Investigation and Reduction of Brake Squeal and Groan Noise

2015-09-27
2015-01-2687
Brake noise is one of the common complaints and an irritant not just for the vehicle occupants but equally for the passers-by. Brake noise is actually vibration that is occurring at a frequency that is audible to the human ear. This occurrence of brake noise like brake squeal (>1 kHz) and groan (<1 kHz) is often very intense and can lead to vehicle complaints. During a brake noise event, vehicle basic structure and suspension system components are excited due to brake system vibration and result in a resonance that is perceived in the form of a noise. Proposed work discusses an experimental study that is carried out on a vehicle for addressing concern regarding disc brake squeal and groan noise. Based on the preliminary inputs, vehicle level study was carried out in order to simulate the problem and objectively capture its severity.
Technical Paper

Investigation on the Effect of Design Feature on Acoustic Performance of Exhaust Muffler for Vehicle

2022-12-23
2022-28-0488
Primarily, Acoustic performance of muffler are evaluated by insertion loss (IL) and backpressure/restriction. Where Insertion loss is mainly depends upon proper selection of muffler volume, which is proportional to Engine Swept volume, along with internal design configuration, which drives the acoustic principle. Same time, meeting the vehicle level pass by noise (PBN) value as per regulatory norms and system level backpressure as per engine specification sheet are the key evaluating criteria of any good exhaust system. Here, a new Reactive/Reflective type muffler of tiny size have been designed for heavy commercial vehicle application, which is unique in shape and innovative to meet desire performance. In this design, mainly sudden expansion, sudden contraction, flow through perforation and bell-mouth flow phenomenon are used.
X