Refine Your Search

Topic

Author

Affiliation

Search Results

Event

2024-04-26
Event

2024-04-26
Event

2024-04-26
Event

2024-04-26
Event

2024-04-26
Event

2024-04-26
Event

2024-04-26
Event

2024-04-26
Event

2024-04-26
Event

2024 On-Board Diagnostics Symposium-Europe

2024-04-26
The 2024 On-Board Diagnostics Symposium-Europe (OBD-EU) continues to serve as the industry’s trusted event, providing regulatory and standards updates geared towards meeting European Commission and the California Air Resources Board ground vehicle emissions regulations.
Technical Paper

A Comprehensive Study on DOC Selection for Euro 6 Compliant Heavy Commercial Vehicles

2021-09-22
2021-26-0216
Euro 6 emission norms are getting implemented in India from April 2020 and it is being viewed as one of the greatest challenges ever faced by the Indian automotive industry. In order to achieve such stringent emission norms along with top performance for vehicle, a good strategy should be incorporated to control system out NOx emissions and soot regeneration. Extruded Vanadium catalyst is deployed for this passive regeneration system with DOC (Diesel Oxidation Catalyst), DPF (Diesel Particulate Filter) and SCR (Selective Catalyst Reduction), where the amount of catalyst loading in DOC plays an apex role in deciding conversion efficiency of SCR and passive regeneration capabilities. This study mainly focuses on the impact of catalyst loading of DOC over SCR efficiency. NO2 to NOx ratio should be close to 0.5 for optimum conversion efficiency of SCR. Catalyst loading in DOC decides the amount of NO2 coming upstream to SCR.
Technical Paper

A Compressed Natural Gas Mass Flow Driven Heavy Duty Electronic Engine Management System

1993-08-01
931822
This paper describes the conversion of a stationary spark ignition engine to a heavy duty (HD) natural gas engine suitable for transportation applications, in response to the new urban truck and bus legislation of 1994 and 1998. The approach to the fuel and ignition control system is to use a microprocessor controlled engine management system based on inputs from combustion air and natural gas mass flow sensors. As the emission control system is also based on stoichiometric three way catalyst technology, it is felt that the control approach is very robust. The engine and control system were first mounted on a HD dynamometer for the development work where engine control parameters were calibrated. In addition steady state emission data were collected and estimates of the HD transient emission levels were obtained.
Technical Paper

A Diesel Oxidation Catalyst for Exhaust Emissions Reduction

1993-11-01
932958
The authors used a mass spectrometer to determine an SOF reduction mechanism of a diesel oxidation catalyst. The results indicate that SOF reduction lies in the catalytic conversion of high molecular organic matter to low molecular organic matter. And unregulated emissions are also reduced through this conversion. It is also found that the SOF reduction performance is highly dependent up on the condition of the wash coat. There is some limitation to improving diesel oxidation catalyst performance because of the sulfur content found in diesel fuel. Finally, the authors have determined what we think are the specifications of the presently best catalytic converter.
Technical Paper

A Dual - Reductant HC LNC Approach to Commercial Vehicle Tier 4 Final Solutions

2011-09-13
2011-01-2203
Stringent global emissions legislations demand effective NOx reduction strategies for both the engine as well as the aftertreatment. Diesel applications have previously applied Lean NOx Catalysts (LNCs) [1, 2], but their reduction efficiency and longevity have been far less than that of the competing ammonia-based SCR systems, such as urea [3]. A catalyst has been developed to significantly reduce NOx emissions, approaching 60% with ULSD and exceeding 95% with E85. Both thermal and sulfur aging are applied, as well as on-engine aging, illustrating resilient performance to accommodate necessary life requirements. A robust system is developed to introduce both ULSD from the vehicle's tank as well as E85 (up to 85% ethanol with the balance being gasoline) from a moderately sized supplemental tank, enabling extended mileage service intervals to replenish the reductant, as compared with urea, particularly when coupled with an engine-out based NOx reduction technology, such as EGR.
Technical Paper

A Fast Start-Up On-Board Diesel Fuel Reformer for NOx Trap Regeneration and Desulfation

2004-10-26
2004-01-2684
This paper describes recent progress in our program to develop an emissions technology allowing diesel engines to meet the upcoming 2007/2010 regulations for NOx. At the heart of this technology is the ArvinMeritor Diesel Fuel Reformer that reforms the fuel, on-demand, on-board a vehicle. The fuel reformer uses plasma to partially oxidize a mixture of diesel fuel and air creating a highly reducing mixture of Hydrogen and Carbon monoxide. In a previous publication, we have demonstrated that using a reformate rich in H2 and CO to regenerate a NOx trap is highly advantageous compared to vaporized diesel fuel used conventionally. In this paper we present results and a strategy for performing desulfation of the traps using the fuel reformer. In contrast to vaporized diesel, which requires very high temperatures that fall outside the normal exhaust operating temperatures for diesel engines, desulfation was achieved at temperatures lower by more than 100 °C using the Plasma Fuel Reformer.
Journal Article

A New Piston Insulation Concept for Heavy-Duty Diesel Engines to Reduce Heat Loss from the Wall

2017-09-04
2017-24-0161
To reduce heat transfer between hot gas and cavity wall, thin Zirconia (ZrO2) layer (0.5mm) on the cavity surface of a forged steel piston was firstly formed by thermal spray coating aiming higher surface temperature swing precisely synchronized with flame temperature near the wall resulting in the reduction of temperature difference. However, no apparent difference in the heat loss was analyzed. To find out the reason why the heat loss was not so improved, direct observation of flame impingement to the cavity wall was carried out with the top view visualization technique, for which one of the exhaust valves was modified to a sapphire window. Local flame behavior very close to the wall was compared by macrophotography. Numerical analysis by utilizing a three-dimensional simulation was also carried out to investigate the effect of several parameters on the heat transfer coefficient.
Technical Paper

A Simple But Effective Catalyst Model for Two-Stroke Engines

1992-09-01
921693
A mathematical model has been developed which predicts the tailpipe exhaust emissions of two-stroke cycle engines utilising an oxidising catalytic converter. This model is currently one-dimensional and has been developed as an aid to the design of engine/exhaust systems. The experimental rig employed has a two-fold function, its primary task was to aid in the validation of the model. Secondary to this it was used to simulate the gaseous properties of the exhaust gas at various positions in the exhaust system. The validation exercise is currently proceeding utilising metallic substrate technology with preliminary results indicating that the model is showing good correlation to measured values.
Technical Paper

A Study of the Durability of Diesel Oxidation Catalysts

1995-11-01
952650
Diesel emission control is being addressed worldwide to help preserve the global environment. In 1994, emission controls in the U.S. called for reduction of diesel particulate matter (PM) to 10 to 20% of 1986's initial limit. In the same year, we developed and marketed small and medium duty trucks which were equipped with PM reduction systems that oxidize soluble organic fraction (SOF) contained in the PM, in order to satisfy these new regulations. Prior to their marketing, a catalyst was selected from among several types of candidate catalysts. Durability tests were performed using a catalytic converter-equipped small duty truck to verify the durability of the chosen catalyst. The durability test course was set up combining urban areas and expressways in the southern part of California, U.S.A.. The cumulative total distance covered on the test course reached 200,000 km. During the durability test, the catalyst was evaluated by measurement of PM emission using a chassis dynamometer.
Technical Paper

A Study on the Performance Deterioration of SCR for Heavy-Duty Diesel Vehicles

2019-12-19
2019-01-2235
In this study, a six litres displacement, commercial vehicle engine that meets the EURO-5 regulation was used to evaluate the durability and performance deterioration of the SCR system mounted on a heavy-duty diesel vehicle. ESC and ETC modes were used for emission test. Characteristics of emissions by SCR catalyst deterioration were investigated using mileage vehicles of 0 km, 120,000 km, and 360,000 km. EDS (Energy Dispersive X-Ray Spectroscopy) analysis on PM filters and CT scan to catalyst substrate were carried out in order to investigate the status of catalyst by each mileage. As a result, it was found that NOX, slipped NH3 as well as PM due to unreacted ammonia and urea increased as the mileage of the catalyst increased.
X