Refine Your Search

Search Results

Viewing 1 to 5 of 5
Journal Article

Aerodynamic Drag of Road Vehicles in Close Lateral Proximity

2023-04-11
2023-01-0952
Aerodynamic interaction between vehicles on a roadway can modify the fuel use and greenhouse gas emissions of the vehicle relative to their performance under isolated, uniform-wind conditions. A comprehensive wind-tunnel study was undertaken to examine changes to the aerodynamic drag experienced by vehicles in close proximity, in adjacent lanes. Wind-load measurements were conducted for two general configurations: 15%-scale testing with light-duty-vehicle (LDV) models, and 6.7%-scale testing with a heavy-duty vehicle (HDV) model. For the LDV study, a DrivAer model was tested with a proximate AeroSUV model or an Ahmed model at lateral distances representing 75%, 100%, and 125% of a typical highway lane spacing, and for longitudinal distances up to 2 vehicle lengths forward and back. Commensurate measurements were conducted for the AeroSUV model with the proximate DrivAer or Ahmed model.
Technical Paper

Impact of Lateral Alignment for Cooling Airflow during Heavy-Truck Platooning

2021-04-06
2021-01-0231
A truck platooning system was tested using two heavy-duty tractor-trailer trucks on a closed test track to investigate the thermal control/heat rejection system sensitivity to intentional lateral offsets over a range of intervehicle spacings. Previous studies have shown the following vehicle can experience elevated temperatures and reduced airflow through the cooling package as a result of close-formation platooning. Four anemometers positioned across the grille of the following trucks as well as aligned and multiple offset positions are used to evaluate the sensitivity of the impact. Straight sections of the track are isolated for the most accurate airflow impact measurements and to be most representative of on-highway driving. An intentional lateral offset in truck platooning is considered as a controls approach to mitigate reduced cooling efficacy at close following scenarios where the highest platoon savings are achieved.
Technical Paper

Impact of Lateral Alignment on the Energy Savings of a Truck Platoon

2020-04-14
2020-01-0594
A truck platooning system was tested using two heavy-duty tractor-trailer trucks on a closed test track to investigate the sensitivity of intentional lateral offsets over a range of intervehicle spacings. The fuel consumption for both trucks in the platoon was measured using the SAE J1321 gravimetric procedure while travelling at 65 mph and loaded to a gross weight of 65,000 lb. In addition, the SAE J1939 instantaneous fuel rate was calibrated against the gravimetric measurements and used as proxy for additional analyses. The testing campaign demonstrated the effects of intervehicle gaps, following-vehicle longitudinal control, and manual lateral control. The new results are compared to previous truck-platooning studies to reinforce the value of the new information and demonstrate similarity to past trends. Fuel savings for the following vehicle was observed to exceed 10% at closer following distances.
Technical Paper

Influences on Energy Savings of Heavy Trucks Using Cooperative Adaptive Cruise Control

2018-04-03
2018-01-1181
An integrated adaptive cruise control (ACC) and cooperative ACC (CACC) was implemented and tested on three heavy-duty tractor-trailer trucks on a closed test track. The first truck was always in ACC mode, and the followers were in CACC mode using wireless vehicle-vehicle communication to augment their radar sensor data to enable safe and accurate vehicle following at short gaps. The fuel consumption for each truck in the CACC string was measured using the SAE J1321 procedure while travelling at 65 mph and loaded to a gross weight of 65,000 lb, demonstrating the effects of: inter-vehicle gaps (ranging from 3.0 s or 87 m to 0.14 s or 4 m, covering a much wider range than previously reported tests), cut-in and cut-out maneuvers by other vehicles, speed variations, the use of mismatched vehicles (standard trailers mixed with aerodynamic trailers with boat tails and side skirts), and the presence of a passenger vehicle ahead of the platoon.
Journal Article

The Influence of Traffic Wakes on the Aerodynamic Performance of Heavy Duty Vehicles

2023-04-11
2023-01-0919
Road vehicles have been shown to experience measurable changes in aerodynamic performance when travelling in everyday safe-distance driving conditions, with a major contributor being the lower effective wind speed associated with the wakes from forward vehicles. Using a novel traffic-wake-generator system, a comprehensive test program was undertaken to examine the influence of traffic wakes on the aerodynamic performance of heavy-duty vehicles (HDVs). The experiments were conducted in a large wind tunnel with four primary variants of a high-fidelity 30%-scale tractor-trailer model. Three high-roof-tractor models (conventional North-American sleeper-cab and day-cab, and a zero-emissions-cab style) paired with a standard dry-van trailer were tested, along with a low-roof day-cab tractor paired with a flat-bed trailer.
X