Refine Your Search

Topic

Author

Affiliation

Search Results

Event

2024-04-25
Technical Paper

145 - 210 Horsepower Agricultural Tractor Noise Reduction Program

1993-09-01
932434
This paper summarizes the techniques and guidelines which were used to reduce the driver perceived noise level of a 145-210 HP series of agricultural tractors. Graphs of case study test results and comments on subjective noise quality are provided to guide the acoustic novice through the complexities of the vehicle sound environment in a methodical problem solving format.
Technical Paper

2003 Chevrolet Kodiak and GMC TopKick Airbag Sensing System Development

2002-11-18
2002-01-3101
Airbag systems have been part of passenger car and truck programs since the mid-1980's. However, systems designed for medium and heavy duty truck applications are relatively new. The release of airbag systems for medium duty truck has provided some unique challenges, especially for the airbag sensing systems. Because of the many commercial applications within the medium duty market, the diversity of the sensing environments must be considered when designing and calibrating the airbag sensing system. The 2003 Chevrolet Kodiak and GMC TopKick airbag sensing development included significant work, not only on the development of airbag deployment events but also non-deployment events – events which do not require the airbag to deploy. This paper describes the process used to develop the airbag sensing system deployment events and non-deployment event used in the airbag sensing system calibration.
Book

2009 Ultimate GD&T Pocket Guide 2nd Ed

2017-03-27
The Ultimate GD&T Pocket Guide explains the most common rules, symbols, and concepts used in geometric dimensioning and tolerancing. ...This one-of-a-kind reference guide includes over 100 detailed drawings to illustrate concepts, more than 40 charts for quick reference, explanations of each GD&T symbol and modifier and much more...Written by standards expert Alex Krulikowski, this valuable on-the-job reference clarifies how to interpret standard-compliant technical drawings that use ASME Y14.5-2009.
Technical Paper

3D Aeroacoustics Simulation of a Complete Bus Exhaust System

2012-11-25
2012-36-0632
Health related problems in over populated areas are a major concern and as such, there are specific legislations for noise generated by transport vehicles. In diesel powered commercial vehicles, the source for noise are mainly related to rolling, transmission, aerodynamics and engine. Considering internal combustion engine, three factors can be highlighted as major noise source: combustion, mechanical and tailpipe. The tailpipe noise is considered as the noise radiated from the open terminations of intake and exhaust systems, caused by both pressure pulses propagating to the open ends of the duct systems, and by vortex shedding as the burst leaves the tailpipe (flow generated noise). In order to reduce noise generated by vehicles, it is important to investigate the gas interactions and what can be improved in exhaust line design during the product development phase.
Journal Article

5.9 GHz DSRC Standards Overview and Status

2008-10-07
2008-01-2651
Over the past several years the Institute of Electrical and Electronic Engineers (IEEE) Standards Association has developed standards for the 5.9 GHz Dedicated Short Range Communications protocols, also known as Wireless Access in Vehicular Environments. These standards consist of IEEE 1609 as well as an amendment to the IEEE 802.11 standard or 802.11p. The 1609 standards were published for Trial Use and these as well as the 802.11p draft have been implemented in a variety of test beds to provide lessons learned and feedback into the standards working groups. Based on ongoing testing, the protocols display a strong capability to address the requirements of crash avoidance and transportation mobility applications. The corresponding test results provide information necessary to update the standards after the first trial phase as industry moves toward commercial implementations.
Technical Paper

5480 Reach Truck-A New Concept in Reach Track Design

1987-09-01
871651
The new 5480 Reach Truck, designed at Dynamic Industries, introduces a movable frame between the main frame and the telescopic boom. The use of this movable frame allows the usually fixed boom pivot to be elevated for greater lifting heights with smaller boom sections. By combining the motions of the boom and the movable frame, horizontal motion at the boom tip is possible without moving the truck. With the movable frame, the total machine height and length can be reduced for a given lifting goal. Another advantage of the movable frame is the ability to reach further below grade than is now possible in the industry. The 5480 Reach Truck has a maximum lift of 54 feet (16.5 meters) and can reach 24 feet (7.3 meters) below-grade.
Technical Paper

A 900 Ton Crawler Crane with 12’ × 12’ Main Boom Cross Section Disassembles for Truck Transport on the Interstate

1987-09-01
871666
The LTL-900 Transi-Lift crane features front and rear crawler-mounted load platforms connected with a hoist-supporting five foot diameter pipe section. The pin-together main boom is available in lengths up to 400 feet and completely disassembles for ease of transport to and from the jobsite. The crane requires three operators and can hoist, boom, swing and travel simultaneously with maximum loads. Upending, moving and setting large refinery vessels is facilitated by the mobility of the crawler-supported crane on unprepared surfaces. Up to 1000 tons of 36 ton concrete beams or equivalent are required as counterweight to develop the ANSI B30.5 approved capacities.
Technical Paper

A Bus for Denver’s Mall

1981-11-01
811280
A unique shuttle bus is being constructed by Minicars, Inc., and Walter Vetter Karosserie-werk for Denver’s Transitway/Mall. The bus is designed for frequent stop, low speed service in a downtown pedestrian environment. It features a very low floor and multiple wide doors for rapid passenger boarding and deboarding. Two versions will be supplied for comparative evalation, a low noise diesel configuration and a battery-electric configuration. Either version can subsequently be converted to the alternative propulsion system.
Technical Paper

A Commercial Excavator: Analysis, Modelling and Simulation of the Hydraulic Circuit

2012-09-24
2012-01-2040
The paper addresses some aspects of an ongoing research on a commercial compact excavator. The interest is focused on the analysis and modelling of the whole hydraulic circuit that, beside a load sensing variable displacement pump, features a stack of nine proportional directional control valves modules of which seven are of the load sensing type. Loads being sensed are the boom swing, boom, stick and bucket, right and left track motors and work tools; instead, the blade and the turret swing users do not contribute to the load sensing signal. Of specific interest are the peculiarities that were observed in the stack. In fact, to develop an accurate AMESim modelling, the stack was dismantled and all modules analysed and represented in a CAD environment as 3D parts. The load sensing flow generation unit was replaced on the vehicle by another one whose analysis and modelling have been developed using available design and experimental data.
Technical Paper

A Comparison Between Micromachined Piezoresistive and Capacitive Pressure Sensors

1997-11-17
973241
Hundreds of millions of micromachined, piezoresistive Manifold Absolute Pressure (MAP) sensors have been produced to reduce pollution and improve fuel efficiency in engine control systems. Other vehicle applications for micromachined pressure sensors include monitoring turbo pressure, barometric pressure, fuel tank leakage, fuel rail pressure and tire pressure. Exhaust gas recirculation and even door compression for side impact detection are employing micromachined silicon pressure sensors. Piezoresistive pressure sensors have dominated the automotive market to date. Practical micromachined capacitive pressure sensors have recently been developed and could replace the piezoresistive sensor in many applications. This paper will examine the advantages of both pressure sensing technologies, and discuss applications that an inexpensive capacitive pressure sensor will open up.
Technical Paper

A Comparison Of The Dynamic Performance Of A U.S. And A European Heavy Vehicle

1988-09-01
885111
Despite the general similarity of U.S. and European heavy trucks, there are differences in design properties that affect braking and turning performance. A European tractor-semitrailer was studied for the purpose of comparing its properties to those of U.S. vehicles and assessing the comparative performance. Mass, suspension, and braking system properties of the European tractor and semitrailer were measured in the laboratory and on the proving ground. Turning and braking performance qualities were evaluated by computer simulation and by experimental tests. In turning performance the European combination had a 9 percent advantage in rollover threshold, compared to a generic U.S. vehicle with properties that were in the midrange of U.S. design practice. Higher suspension roll stiffness and higher chassis weight on the European tractor and semitrailer accounted for the higher threshold.
Technical Paper

A Comparison of Crash Patterns in Heavy Trucks with and Without Collision Warning System Technology

2004-10-26
2004-01-2651
Collision warning systems (CWS) are a relatively new technology to reduce or mitigate motor vehicle rear-end and side impact collisions. This study compared available police-reported crash experiences of 6,143 CWS-equipped heavy trucks with the experiences of 383,058 heavy trucks without CWS. Data were from the Motor Carrier Management Information System (2000-2002). Results suggest that CWS-equipped trucks had a significantly lower proportion of crashes involving other moving vehicles and a significantly lower proportion of multiple vehicle crashes compared to trucks without CWS, (40% vs. 49%, p<0.0001; 62% vs. 67%, p<0.004 respectively). These changes are the first crash-data based evidence that supports the design effect of CWS. However, more studies are needed to determine the specific impacts of CWS on heavy truck crashes.
Technical Paper

A Comparison of Results Obtained With Different Analytical Techniques for Reconstruction of Highway Accidents

1975-02-01
750893
For several staged collisions, results obtained with closed form reconstruction calculations and with a computerized step-by-step procedure are compared with measured responses. A refined, closed-form reconstruction procedure is defined, derivations of the analytical relationships are outlined and detailed results of sample applications are presented. Closed form calculation procedures for estimating impact conditions became a topic of interest in relation to the development of an automatic starting routine for iterative applications of the Simulation Model of Automobile Collisions (SMAC) computer program. The accuracy of initial estimates of speeds determines the total number of iterative adjustments of SMAC that are required to achieve an acceptable overall match of the evidence. Since a high degree of success was achieved in the refinement of such calculation procedures, the end product, by itself, is considered to be a valuable aid to accident investigations.
Journal Article

A Comparison of the Mid-Size Male THOR and Hybrid III ATDs in Vehicle Frontal Crash Tests

2023-06-27
2022-22-0005
In order to evaluate the THOR-50M as a front impact Anthropomorphic Test Device (ATD) for vehicle safety design, the ATD was compared to the H3-50M in matching vehicle crash tests for 20 unique vehicle models from 2 vehicle manufacturers. For the belted driver condition, a total of fifty-four crash tests were investigated in the 56.3 km/h (35 mph) front rigid barrier impact condition. Four more tests were compared for the unbelted driver and right front passenger at 40.2 km/h (25 mph) in the flat frontal and 30-degree right oblique rigid barrier impact conditions. The two ATDs were also evaluated for their ability to predict injury risk by comparing their fleet average injury risk to Crash Investigation Sampling System (CISS) accident data for similar conditions. The differences in seating position and their effect on ATD responses were also investigated.
Technical Paper

A Computer Graphics Interface Specification for Studying Humans, Vehicles and Their Environment

1993-03-01
930903
This paper describes a general purpose computer graphics interface for performing detailed two- and three-dimensional studies involving the dynamic response of humans and vehicles during the pre-crash, crash and post-crash phases of a motor vehicle accident. Specifications are provided for human, vehicle and environment models which can be constructed and analyzed using the interface. The requirements of analysis methods which may be incorporated into the interface are examined, and several examples are provided. Finally, the paper illustrates how the interface is used for creating high-level animations to view the resulting human and/or vehicle motion on various output devices such as computer displays, printers, plotters and video tape recorders.
Technical Paper

A Computer-Based Study of the Yaw/Roll Stability of Heavy Trucks Characterized by High Centers of Gravity

1982-02-01
821260
A class of heavy truck vehicles, characterized primarily by high centers of gravity, was studied using analysis and computer simulation to identify and understand the relationship between directional and roll stability of such vehicles during steady turning maneuvers. Findings of the computer-based study suggest: (1) directional instability (yaw divergence) is possible for such vehicles during steady turning while operating at elevated speeds on horizontal road surfaces, (2) yaw divergence will lead to rollover in the absence of corrective steering action and/or reduced speed, and (3) the primary mechanism responsible for precipitating yaw divergent behavior in such vehicles is the nonlinear sensitivity of truck tire cornering stiffness to vertical load acting in combination with typical heavy truck fore/aft roll stiffness distributions. In addition, the influences of roadway superelevation and driver steering control as contributors to vehicle stabilization are examined and discussed.
Technical Paper

A Coupled Approach to Truck Drum Brake Cooling

2015-09-29
2015-01-2901
Trucks can carry heavy load and when applying the brakes during for example a mountain downhill or for an abrupt stop, the brake temperatures can rise significantly. Elevated temperatures in the drum brake region can reduce the braking efficiency or can even cause the brake system to fail, catch fire or even break. It therefore needs to be designed such to be able to transfer the heat out of its system by convection, conduction and/or radiation. All three heat transfer modes play an important role since the drum brakes of trucks are not much exposed to external airflow, a significant difference from disk brakes of passenger cars analyzed in previous studies. This makes it a complex heat transfer problem which is not easy to understand. Numerical methods provide insight by visualization of the different heat transfer modes. Presented is a numerical method that simulates the transient heat transfer of a truck drum brake system cooldown at constant driving speed.
Technical Paper

A Detailed Analysis of Proper Safety Features Implementation in the Design and Construction of Modern Automotive LPG and CNG Containers

2014-04-01
2014-01-0418
Paper describes analysis of the design process of modern automotive LPG and CNG containers. Over decade experience in the field of both computer based analysis as well as in the real conditions testing has been collected and presented in the paper. Authors present the potentials of modern FEM methodologies in the optimization and production of lightweight steel containers. It has been proved that the most sophisticated numerical analysis have to be followed by the construction verification, particularly considering direct exposure to fire. Bonfire test have become obligatory for both liquid and compressed gases containers. Properly chosen fire protection system, together with the adequate level of quality of materials applied for its production together with proper directing of the gas flowing out from safety devices are the essential factors defining gas containers fire safety.
X