Refine Your Search

Topic

Author

Affiliation

Search Results

Viewing 1 to 20 of 19863
Technical Paper

<PP/SEBS> Compounds: Sealing an Easier Future for Automotive Designers and Specifiers

2002-07-09
2002-01-1997
There is a definite trend toward the increasing use of “Glass Encapsulation Technology” in the automotive industry. In this technology a glass object such as a window is placed within a mould and an elastomer is injected around the window giving a tight sealing system. A wide variety of materials are currently used as the sealing materials in either static or semi-static encapsulated glazing systems, including a wide range of “elastomers”. New thermoplastic elastomer compounds are being developed that are characterized by their consistent properties; including high melt-fluidity, very good surface appearance, sealing properties, and resistance to weathering. Compound performance is highly dependent on formulation variables as well as the chemistries of the base materials. KRATON® SEBS polymers1 are block copolymers of styrene and ethylene/butylene.
Technical Paper

175°C-Capable Thermoplastic Elastomers for Automotive Air Management and Sealing Applications

2007-11-28
2007-01-2576
Flexibility, oil resistance, and the need for heat resistance to 150°C-plus temperatures have traditionally limited automotive design engineers to two options - thermoset rubber or heat-shielding conventional thermoplastic elastomers (TPE). Both of these options present limitations in part design, the ability to consolidate the number of components in a part of assembly, and on total cost. This paper presents a class of high-performance, flexible thermoplastic elastomers based on dynamically vulcanized polyacrylate (ACM) elastomer dispersed in a continuous matrix of polyamide (PA) thermoplastic. These materials are capable of sustained heat resistance to 150°C and short-term heat resistance to 175°C, without requiring heat shielding. Recent advancements in blow molding and functional testing of the PA//ACM TPEs for automotive air management (ducts) and underhood sealing applications will be shown.
Technical Paper

1953 Paper Jet Operations in Retrospect with Connotations for the Supersonic Transport

1965-02-01
650231
A first attempt to study civil aircraft operations comprehensively, prior to having the airplane, occurred before the initial operation of U.S. subsonic jets. One airline carried out a manual-simulated “paper jet” operation lasting fifteen months. Today, computerized simulation of machines, methods, and operations has become commonplace, and replaces the slide rule and tedious day-by-day inputs of aircraft operational criteria. Computerized simulations are also applied to every aspect of the SST design and operations. These are important, but the results being should be used with caution and judgement.
Technical Paper

1988 Chevrolet/GMC Full-Size Pickup Truck Aerodynamics

1987-11-01
872274
This paper is a summary of the aerodynamic development of the 1988 Chevrolet and GMC pickup truck. Comprehensive drag reduction work was performed with clay models from the original concept through the detailed full-scale model. In addition, the aerodynamic development included wind rush noise reduction, optimization of engine cooling air flow, and body surface pressures for HVAC performance.
Technical Paper

1998/1999 AIAA Foundation Graduate Team Aircraft Design Competition: Super STOL Carrier On-board Delivery Aircraft

2000-10-10
2000-01-5535
The Cardinal is a Super Short Takeoff and Landing (SSTOL) aircraft, which is designed to fulfill the desire for center-city to center-city travel by utilizing river “barges” for short takeoffs and landings to avoid construction of new runways or heliports. In addition, the Cardinal will fulfill the needs of the U.S. Navy for a Carrier On-board Delivery (COD) aircraft to replace the C-2 Greyhound. Design requirements for the Cardinal included a takeoff ground roll of 300 ft, a landing ground roll of 400 ft, cruise at 350 knots with a range of up to 1500 nm with reserves, payload of 24 passengers and baggage for a commercial version or a military version with a 10,000 lb payload, capable of carrying two GE F110 engines for the F-14D, and a spot factor requirement of 60 feet by 29 feet.
Technical Paper

1D Modelling of Thermal Management of a Jet Trainer Aircraft

2023-03-07
2023-01-1005
Most of current jet aircraft circulate fuel on the airframe to match heat loads with available heat sink. The demands for thermal management in wide range of air vehicle systems are growing rapidly along with the increased mission power, vehicle survivability, flight speeds, and so on. With improved aircraft performance and growth of heat load created by Aircraft Mounted Accessory Drive (AMAD) system and hydraulic system, effectively removing the large amount of heat load on the aircraft is gaining crucial importance. Fuel is becoming heat transfer fluid of choice for aircraft thermal management since it offers improved heat transfer characteristics and offers fewer system penalties than air. In the scope of this paper, an AMESim model is built which includes airframe fuel and hydraulic systems with AMAD gearbox of a jet trainer aircraft. The integrated model will be evaluated for thermal performance.
Technical Paper

1K and 2K Polyurethanes for Automotive Topcoats

1993-03-01
930049
The increased occurrence of environmental damage to automotive topcoats and the variety of abrasive conditions to which the coating is subjected have made increasing demands on the properties of these coatings. There is as yet, no single paint chemistry that fulfills these extreme requirements in all respects. On the other hand, the right choice of components in polyurethane can result in excellent etch resistance as well as improved scratch resistance compared to traditional melamine/acrylic systems. This paper will discuss some recent studies in the areas of two-component and one-component polyurethane chemistry, which address these rigorous quality requirements.
Technical Paper

2-Color Thermometry Experiments and High-Speed Imaging of Multi-Mode Diesel Engine Combustion

2005-10-24
2005-01-3842
Although in-cylinder optical diagnostics have provided significant understanding of conventional diesel combustion, most alternative combustion strategies have not yet been explored to the same extent. In an effort to build the knowledge base for alternative low-temperature combustion strategies, this paper presents a comparison of three alternative low-temperature combustion strategies to two high-temperature conventional diesel combustion conditions. The baseline conditions, representative of conventional high-temperature diesel combustion, have either a short or a long ignition delay. The other three conditions are representative of some alternative combustion strategies, employing significant charge-gas dilution along with either early or late fuel injection, or a combination of both (double-injection).
Technical Paper

2-D Measurements of the Liquid Phase Temperature in Fuel Sprays

1995-02-01
950461
Cross-sectional distributions of the liquid phase temperatures in fuel sprays were measured using a laser-induced fluorescence technique. The liquid fuel (n-hexadecane or squalane) was doped with pyrene(C16H10). The fluorescence intensity ratios of the pyrene monomer and excimer emissions has temperature dependence, and were used to determine the liquid phase temperatures in the fuel sprays. The measurements were performed on two kinds of sprays. One was performed on pre-heated fuel sprays injected into surrounding gas at atmospheric conditions. The other was performed on fuel sprays exposed to hot gas flow. The spray was excited by laser radiation at 266nm, and the resulting fluorescence was imaged by an intensified CCD camera. The cross-sectional distribution of the liquid phase temperature was estimated from the fluorescence image by the temperature dependence of the intensity ratio.
Technical Paper

2-Ply Windshields: Laboratory Impactor Tests of the Polyurethane Construction

1995-02-01
950048
A test program was conducted to characterize the impact response of an experimental 2-ply windshield construction with a polyurethane (PUR) plastic inner layer. Windshield impact tests were conducted using a linear impactor test facility. Principle among the findings was that the impact response of prototype PUR 2-ply windshields does not differ that significantly from that of baseline 3-ply HPR (High Penetration Resistance) windshields for the subcompact vehicle geometry tested. However, the impact responses of both PUR 2-ply and 3-ply HPR subcompact vehicle windshields were found to be highly variable. Average performance of either construction could thus be enhanced if ways could be found (and then implemented) to reduce this variability.
Technical Paper

2-Stroke Diesel Engine for Light Aircraft: IDI vs. DI Combustion Systems

2010-10-25
2010-01-2147
The paper presents a numerical study aimed at converting a commercial lightweight 2-Stroke Indirect Injection (IDI) Diesel aircraft engine to Direct Injection(DI). First, a CFD-1D model of the IDI engine was built and calibrated against experiments at the dynamometer bench. This model is the baseline for the comparison between the IDI and the DI combustion systems. The DI chamber design was supported by extensive 3D-CFD simulations, using a customized version of the KIVA-3V code. Once a satisfactory combustion system was identified, its heat release and wall transfer patterns were entered in the CFD-1D model, and a comparison between the IDI and the DI engine was performed, considering the same Air-Fuel Ratio limit. It was found that the DI combustion system yields several advantages: better take-off performance (higher power output), lower fuel consumption at cruise conditions, improved altitude performance, reduced cooling requirements.
Journal Article

2-Stroke High Speed Diesel Engines for Light Aircraft

2011-09-11
2011-24-0089
The paper describes a numerical study, supported by experiments, on light aircraft 2-Stroke Direct Injected Diesel engines, typically rated up to 110 kW (corresponding to about 150 imperial HP). The engines must be as light as possible and they are to be directly coupled to the propeller, without reduction drive. The ensuing main design constraints are: i) in-cylinder peak pressure as low as possible (typically, no more than 120 bar); ii) maximum rotational speed limited to 2600 rpm. As far as exhaust emissions are concerned, piston aircraft engines remain unregulated but lack of visible smoke is a customer requirement, so that a value of 1 is assumed as maximum Smoke number. For the reasons clarified in the paper, only three cylinder in line engines are investigated. Reference is made to two types of scavenging and combustion systems, designed by the authors with the assistance of state-of-the-art CFD tools and described in detail in a parallel paper.
Technical Paper

2005 Ford GT - Vehicle Aerodynamics - Updating a Legend

2004-03-08
2004-01-1254
This paper documents the processes and methods used by the Ford GT team to meet aerodynamic targets. Methods included Computational Fluid Dynamics (CFD) analysis, wind tunnel experiments (both full-size and scale model), and on-road experiments and measurements. The goal of the team was to enhance both the high-speed stability and track performance of the GT. As a result of the development process, significant front and rear downforce was achieved while meeting the overall drag target.
Technical Paper

2006 Chevrolet Corvette C6 Z06 Aerodynamic Development

2005-04-11
2005-01-1943
This paper is intended to give a general overview of the key aerodynamic developments for the 2006 Chevrolet Corvette C6 Z06. Significant computational and wind tunnel time were used to develop the 2006 Z06 to provide it with improved high speed stability, increased cooling capability and equivalent drag compared to the 2004 Chevrolet Corvette C5 Z06.
Book

2009 Ultimate GD&T Pocket Guide 2nd Ed

2017-03-27
The Ultimate GD&T Pocket Guide explains the most common rules, symbols, and concepts used in geometric dimensioning and tolerancing. ...This one-of-a-kind reference guide includes over 100 detailed drawings to illustrate concepts, more than 40 charts for quick reference, explanations of each GD&T symbol and modifier and much more...Written by standards expert Alex Krulikowski, this valuable on-the-job reference clarifies how to interpret standard-compliant technical drawings that use ASME Y14.5-2009.
Article

2050 aircraft engine designs go radical, part 1

2018-10-23
The search for ever-lower emission technology for future generations of aircraft engines is actively progressing on both sides of the Atlantic. Tucked away on a modest-size stand at this year’s Farnborough International Airshow was a highly varied collection of unconventional engine technology displays – a clear indication of radical innovation already being investigated as a part of Ultimate, the European Horizon 2020 research and innovation project.
X