Refine Your Search

Topic

null

Search Results

Standard

ABRASION RESISTANCE TESTING—VEHICLE EXTERIOR GRAPHICS AND PIN STRIPING

1989-06-01
J1847_198906
This SAE Recommended Practice applies to the abrasion resistance testing of decorative tapes, graphics, and pin striping. It may also have relevance to certain vehicle labels and plastic wood grain film. The resistance to abrasive damage is judged qualitatively by its effect on the legibility, pattern, and color of the graphic marking. This recommended practice is intended as a guide toward standard practice but may be subject to frequent change to keep pace with experience and technical advances. This should be kept in mind when considering the use of this recommended practice.
Standard

Abrasion Resistance Testing - Vehicle Exterior Graphics and Pin Striping

2021-01-07
J1847_202101
This SAE Recommended Practice applies to the abrasion resistance testing of decorative tapes, graphics, and pin striping. It may also have relevance to certain vehicle labels and plastic wood grain film. The resistance to abrasive damage is judged qualitatively by its effect on the legibility, pattern, and color of the graphic marking. This recommended practice is intended as a guide toward standard practice but may be subject to frequent change to keep pace with experience and technical advances. This should be kept in mind when considering the use of this recommended practice.
Standard

Ball Stud and Socket Assembly - Test Procedures

2012-10-15
J193_201210
The test procedures describe a method to laboratory test suspension and steering system ball stud and/or socket assemblies for functional characteristics. This procedure is an extension of SAE J491b recommended practice on dimensional recommendations for ball studs towards a vehicle application. The tests are conducted either on ball studs individually or on complete integral assemblies representing the application.
Standard

COACH JOINT FRACTURE TEST

1993-11-01
J1863_199311
This SAE Recommended Practice defines a procedure for determining the cleavage strength of an adhesive used for bonding automotive oily metal substrates.
Standard

Coach Joint Fracture Test

2021-01-07
J1863_202101
This SAE Recommended Practice defines a procedure for determining the cleavage strength of an adhesive used for bonding automotive oily metal substrates.
Standard

DECORATIVE ANODIZING SPECIFICATION FOR AUTOMOTIVE APPLICATIONS

1993-06-01
J1974_199306
Detailed in this SAE Recommended Practice are interior and exterior bright or electrolytically colored anodized aluminum automotive components in the form of seat trim, dashboard, window or side body mouldings, bumpers, wheels, rocker panel, etc.
Standard

FATIGUE TESTING PROCEDURE FOR SUSPENSION-LEAF SPRINGS

1990-06-30
J1528_199006
Only fully processed new springs which are representative of springs intended for the vehicle shall be used for the tests. No complete spring or separate leaf shall be used for more than one test.
Standard

Fatigue Testing Procedure for Suspension-Leaf Springs

2016-04-05
J1528_201604
Only fully processed new springs which are representative of springs intended for the vehicle shall be used for the tests. No complete spring or separate leaf shall be used for more than one test.
Standard

GUIDELINES FOR LABORATORY CYCLIC CORROSION TEST PROCEDURES FOR PAINTED AUTOMOTIVE PARTS

1993-10-13
J1563_199310
These guidelines are intended for those engineers and scientists who evaluate the corrosion performance of painted automotive parts in laboratory cyclic tests. The guidelines are intended to help ensure that the results of the tests can be used to reach conclusions concerning the variables under study without being confounded by the test procedure itself. The guidelines also serve as a means to assist users of this type of test in obtaining good inter-laboratory agreement of results.
Standard

Guidelines for Laboratory Cyclic Corrosion Test Procedures for Painted Automotive Parts

2016-04-05
J1563_201604
These guidelines are intended for those engineers and scientists who evaluate the corrosion performance of painted automotive parts in laboratory cyclic tests. The guidelines are intended to help ensure that the results of the tests can be used to reach conclusions concerning the variables under study without being confounded by the test procedure itself. The guidelines also serve as a means to assist users of this type of test in obtaining good inter-laboratory agreement of results.
Standard

INDUCTION CURE TEST FOR METAL BONDING ADHESIVES

1987-05-01
J1851_198705
This SAE Recommended Practice defines a procedure for determining the adhesion strength characteristics of heat-cured metal bonding adhesives subjected to induction heating.
Standard

Induction Cure Test for Metal Bonding Adhesives

2021-01-07
J1851_202101
This SAE Recommended Practice defines a procedure for determining the adhesion strength characteristics of heat-cured metal bonding adhesives subjected to induction heating.
Standard

Laboratory Corrosion/Fatigue Testing of Vehicle Suspension Coil Springs

2007-06-15
J2800_200706
This lab test procedure should be used when evaluating the combined corrosion and fatigue performance for a particular coating system, substrate, process and design. The test is intended to provide an A to B comparison of a proposed coil spring design versus an existing field validated coil spring when subjected to the combined effects of corrosion and fatigue. The corrosion mechanisms covered by this test include general, cosmetic and pitting corrosion. Fatigue testing covers the maximum design stress and/or stress range of the coil spring design (typically defined as excursion from jounce to rebound positions in a vehicle). The effects of gravel and heat are simulated by pre-conditioning the springs prior to fatigue testing. Time dependant corrosion mechanisms such as stress corrosion cracking are not addressed with this test.
Standard

Laboratory Corrosion/Fatigue Testing of Vehicle Suspension Coil Springs

2016-04-01
J2800_201604
This lab test procedure should be used when evaluating the combined corrosion and fatigue performance for a particular coating system, substrate, process and design. The test is intended to provide an A to B comparison of a proposed coil spring design versus an existing field validated coil spring when subjected to the combined effects of corrosion and fatigue. The corrosion mechanisms covered by this test include general, cosmetic and pitting corrosion. Fatigue testing covers the maximum design stress and/or stress range of the coil spring design (typically defined as excursion from jounce to rebound positions in a vehicle). The effects of gravel and heat are simulated by pre-conditioning the springs prior to fatigue testing. Time dependant corrosion mechanisms such as stress corrosion cracking are not addressed with this test.
X