Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

04 Emission Reduction by Cylinder Wall Injection in 2-Stroke S.I. Engines

2002-10-29
2002-32-1773
A direct injection system in which fuel was injected through the cylinder wall was developed and detailed investigation was made for the purpose of reducing short-circuit of fuel in 2-stroke engines. As a result of dynamo tests using 430cc single cylinder engine, it was found that the injector was best attached at a location as close to TDC as possible on the rear transfer port side, and that the entire amount of fuel should be injected towards the piston top surface. Emissions were worsened if fuel was injected towards the exhaust port or spark plug. Although the higher injection pressure resulted in large emissions reduction effects, it did not have a significant effect on fuel consumption. When a butterfly exhaust valve, known to be effective against irregular combustion in the light load range, was applied, it was found to lead to further reductions in HC emission and fuel consumption while also improving combustion stability.
Technical Paper

1-D Numerical Model of a Spark Ignition Engine Fueled with Methanol for Off-Grid Charging Stations

2023-08-28
2023-24-0098
The road transportation sector is undergoing significant changes, and new green scenarios for sustainable mobility are being proposed. In this context, a diversification of the vehicles’ propulsion, based on electric powertrains and/or alternative fuels and technological improvements of the electric vehicles charging stations, are necessary to reduce greenhouse gas emissions. The adoption of internal combustion engines operating with alternative fuels, like methanol, may represent a viable solution for overcoming the limitations of actual grid connected charging infrastructure, giving the possibility to realize off-grid charging stations. This work aims, therefore, at investigating this last aspect, by evaluating the performance of an internal combustion engine fueled with methanol for stationary applications, in order to fulfill the potential demand of an on off-grid charging station.
Technical Paper

3-D Modeling of Conventional and HCCI Combustion Diesel Engines

2004-10-25
2004-01-2964
An investigation of the possibility to extend the 3-dimensional modeling capabilities from conventional diesel to the HCCI combustion mode simulation was carried out. Experimental data was taken from a single cylinder engine operating with early injections for the HCCI and a split-injection (early pilot+main) for the high speed Diesel engine operation. To properly phase the HCCI mode in the experiments, high amounts of cooled EGR and a decreased compression ratio were used. In numerical simulation performed using KIVA3-V code, modified to incorporate the Detailed Chemistry Approach the same conditions were reproduced. Special attention is paid on the analysis of the events leading up to the auto-ignition, which was reasonably well predicted.
Technical Paper

3D Numerical Simulation of Fuel injection and Combustion Phenomena in DI Diesel Engines

1989-02-01
890668
Recently the analysis of air-fuel mixing and combustion has become important under the stringent emissions regulations of diesel engines. In the case of gasoline engines, the KIVA computer program has been developed and used for the analysis of combustion. In this paper, the calculations of combustion phenomena in DI diesel engines are performed by modifying the KIVA program so as to be applicable to multi-hole nozzles and arbitrary patterns of injection rate. The thermophysical and ther-mochemical properties of gasoline are altered to those diesel fuel. In order to investigate the ability of this modified program, the calculations are compared with the experiments on single cylinder engines concerning the pressure, flame temperature and mass change of chemical species in cylinders. Furthermore, the calculation for the heavy duty DI diesel engine is performed with this diesel combustion program.
Journal Article

3D-CFD RANS Methodology to Predict Engine-Out Emissions with Gasoline-Like Fuel and Methanol for a DISI Engine

2022-09-16
2022-24-0038
Renewable fuels, such as bio- and e-fuels, are of great interest for the defossilization of the transport sector. Among these fuels, methanol represents a promising candidate for emission reduction and efficiency increase due to its very high knock resistance and its production pathway as e-fuel. In general, reliable simulation tools are mandatory for evaluating a specific fuel potential and optimizing combustion systems. In this work, a previously presented methodology (Esposito et al., Energies, 2020) has been refined and applied to a different engine and different fuels. Experimental data measured with a single cylinder engine (SCE) are used to validate RANS 3D-CFD simulations of gaseous engine-out emissions. The RANS 3D-CFD model has been used for operation with a toluene reference fuel (TRF) gasoline surrogate and methanol. Varying operating conditions with exhaust gas recirculation (EGR) and air dilution are considered for the two fuels.
Technical Paper

4 Stroke Gasoline Engine Performance Optimization Using Statistical Techniques

2001-12-01
2001-01-1800
The engine designer has to find novel methods to optimize the engine efficiency faster as the engine development cycle is getting shortened due to the continuous growing market demands. Engine optimization involves fine tuning of the various engine parameters and conducting a large number of tests on actual engine test bed. In this paper, modern techniques that have been used to optimize a small 4stroke air-cooled engine performance have been described. The engine has been modelled using one-dimensional thermodynamic engine modelling software (AVL-BOOST). Design of experiments (DoE) tools have been used to optimize the engine variables. The input parameters form an orthogonal array of L27 matrix and the out put characteristics of the engine (responses) have been predicted by using BOOST software. This design matrix has been used to study and optimize thirteen factors in three levels (313).
Journal Article

48V Exhaust Gas Recirculation Pump: Reducing Carbon Dioxide with High-Efficiency Turbochargers without Increasing Engine-Out NOx

2021-08-23
Abstract Regulations limiting GreenHouse Gases (GHG) from Heavy-Duty (HD) commercial vehicles in the United States (US) and European Union will phase in between the 2024 and 2030 model years. These mandates require efficiency improvements at both the engine and vehicle levels, with the most stringent reductions required in the heaviest vehicles used for long-haul applications. At the same time, a 90% reduction in oxides of nitrogen (NOx) will be required as part of new regulations from the California Air Resources Board. Any technologies applied to improve engine efficiency must therefore not come at the expense of increased NOx emissions. Research into advanced engine architectures and components has identified improved turbomachine efficiency as one of the largest potential contributors to engine efficiency improvement. However this comes at the cost of a reduced capability to drive high-pressure Exhaust Gas Recirculation (EGR).
Technical Paper

A 3D-CFD Methodology for Combustion Modeling in Active Prechamber SI Engines Operating with Natural Gas

2022-03-29
2022-01-0470
Active prechamber combustion systems for SI engines represent a feasible and effective solution in reducing fuel consumption and pollutant emissions for both marine and ground heavy-duty engines. However, reliable and low-cost numerical approaches need to be developed to support and speed-up their industrial design considering their geometry complexity and the involved multiple flow length scales. This work presents a CFD methodology based on the RANS approach for the simulation of active prechamber spark-ignition engines. To reduce the computational time, the gas exchange process is computed only in the prechamber region to correctly describe the flow and mixture distributions, while the whole cylinder geometry is considered only for the power-cycle (compression, combustion and expansion). Outside the prechamber the in-cylinder flow field at IVC is estimated from the measured swirl ratio.
Technical Paper

A Camshaft Torque Actuated Vane Style VCT Phaser

2005-04-11
2005-01-0764
BorgWarner has developed a continuously variable vane style VCT camshaft phaser that, differing from the oil pressure actuated phasers in production, utilizes camshaft torque energy, not oil pump flow, to actuate. This VCT phaser has several distinct advantages, low oil flow requirements and fast response rates even at low RPM. The low oil flow requirement, allows this Cam Phaser to easily adapt to existing engine platforms without major engine modifications or increases in oil pump size. For new engine designs a smaller oil pump can be selected and thereby improve overall engine efficiency. Since the phaser responds to camshaft torque energy and actuates independent of oil pressure, fast response rates are available from idle on up through the engine operating range, allowing the engine calibrator to adopt a more aggressive approach to camshaft timing.
Technical Paper

A Comparative Analysis of WHR System in HD Engines Using Conventional Diesel Combustion and Partially-Premixed Combustion

2012-09-24
2012-01-1930
In the truck industry there is a continuous demand to increase the efficiency and to decrease the emissions. To acknowledge both these issues a waste heat recovery system (WHR) is combined with a partially premixed combustion (PPC) engine to deliver an efficient engine system. Over the past decades numerous attempts to increase the thermal efficiency of the diesel engine has been made. One such attempt is the PPC concept that has demonstrated potential for substantially increased thermal efficiency combined with much reduced emission levels. So far most work on increasing engine efficiency has been focused on improving the thermal efficiency of the engine while WHR, which has an excellent potential for another 1-5 % fuel consumption reduction, has not been researched that much yet. In this paper a WHR system using a Rankine cycle has been developed in a modeling environment using IPSEpro.
Technical Paper

A Comparative Study of Knock Formation in Gasoline and Methanol Combustion Using a Multiple Spark Ignition Approach: An Optical Investigation

2024-04-09
2024-01-2105
Engine knock is a major challenge that limits the achievement of higher engine efficiency by increasing the compression ratio of the engine. To address this issue, using a higher octane number fuel can be a potential solution to reduce or eliminate the propensity for knock and so obtain better engine performance. Methanol, a promising alternative fuel, can be produced from conventional and non-conventional energy resources, which can help reduce pollutant emissions. Methanol has a higher octane number than typically gasolines, which makes it a viable option for reducing knock intensity. This study compared the combustion characteristics of gasoline and methanol fuels in an optical spark-ignition engine using multiple spark plugs. The experiment was carried out on a single-cylinder four-stroke optical engine. The researchers used a customized metal liner with four circumferential spark plugs to generate multiple flame kernels inside the combustion chamber.
Technical Paper

A Comparative Study of Performance and Emission Characteristics of CNG and Gasoline on a Single Cylinder S. I. Engine

2004-01-16
2004-28-0038
In this study some experiments were carried out to evaluate fuel consumption and exhaust emissions of carbon monoxide (CO), oxides of nitrogen (NOx)) and hydrocarbons (HC) with compressed natural gas (CNG) and gasoline in a single cylinder engine. Compressed natural gas showed 3 to 5 percent higher thermal efficiency and 15 percent lower specific fuel consumption as compared to gasoline. Also CO emissions were lower by 30-80 percent in rich zone and NOx by about 12 percent at an equivalence of 1.0. At wide open throttle CNG operation resulted in 10 to 12 percent lower power output. However, thermal efficiency and brake specific fuel consumption (bsfc) was better with CNG as compared to gasoline. Dual spark plug operation increased power output by 3 to 5 percent.
Technical Paper

A Comparative Study of Plasma lgnition Systems

1983-02-01
830479
Performance of an array of plasma ignition systems has been studied in a CFR engine.This included a standard spark plug, an extended spark plug, a surface discharge plug, and two plasma jet ignitors, one with open cavity and the other with cavity provided with a jet forming orifice.For all the tests the engine was run at a compression ratio of 3:1, a wide open throttle, and minimum for best torque (MBT) ignition timing. In this way specific information was obtained on ignition delay, duration of the exothermic combustion process, engine efficiency, and pollutant emissions.The study demonstrated the effect of various ignition systems on engine performance as the lean operating limit is approached.
Technical Paper

A Comparative Study on Fuel Economy for CVT and 9-speed AT based Vehicles

2017-10-08
2017-01-2435
It is well-known that, compared with automatic transmissions (ATs), continuously variable transmission (CVT) shows advantages in fuel saving due to its continuous shift manner, since this feature enables the engine to operate in the efficiency-optimized region. However, as the AT gear number increases and the ratio gap narrows, this advantage of CVT is challenged. In this paper, a comparative study on fuel economy for a CVT based vehicle and a 9-speed automatic transmission (AT) based vehicle is proposed. The features of CVT and AT are analyzed and ratio control strategies for both the CVT and 9-speed AT based vehicles are designed from the view point of vehicle fuel economy, respectively. For the 9-speed AT, an optimal gear shift map is constructed. With this gear shift map, the optimal gear is selected as vehicle velocity and driving condition vary.
Technical Paper

A Comparison of Methanol and Dissociated Methanol Illustrating Effects of Fuel Properties on Engine Efficiency—Experiments and Thermodynamic Analyses

1985-02-01
850217
Methanol, a popular alternative fuel candidate, can theoretically be dissociated on-board a vehicle into a 2/1 molar mixture of hydrogen (H2) and carbon monoxide (CO) having a 14 percent greater heating value than that of methanol vapor. In this study, engine efficiency and fuel consumption with methanol vapor and dissociated methanol (simulated by a 2/1 mixture of Ha and CO) were compared in a single-cylinder engine at equivalence ratios (Φ’s) ranging from 0.5 to 0.9 and compression ratios (CR’s) from 11 to 14. Whan compared at the same Φ and CR, the reduction in fuel consumption for dissociated methanol compared to methanol (3-7 percent) was smaller than would be expected based on heating value alone. Indicated thermal efficiency with dissociated methanol was only 0.89-0.55 times that with methanol. Thermodynamic analyses were conducted to isolate the factors responsible for lower efficiency with dissociated methanol.
Technical Paper

A Competitive Approach to an Active Exhaust Heat Recovery System Solution

2020-04-14
2020-01-0161
As greenhouse gas regulations continue to tighten, more opportunities to improve engine efficiency emerge, including exhaust gas heat recovery. Upon cold starts, engine exhaust gases downstream of the catalysts are redirected with a bypass valve into a heat exchanger, transferring its heat to the coolant to accelerate engine warm-up. This has several advantages, including reduced fuel consumption, as the engine’s efficiency improves with temperature. Furthermore, this accelerates readiness to defrost the windshield, improving both safety as well as comfort, with greater benefits in colder climates, particularly when combined with hybridization’s need for engine on-time solely for cabin heating. Such products have been in the market now for several years; however they are bulky, heavy and expensive, yielding opportunities for competitive alternatives.
Technical Paper

A Computational Study of Wall Temperature Effects on Engine Heat Transfer

1991-01-25
910459
Recently, several theories have been offered as possible explanations for claimed increases in diesel engine heat transfer when combustion chamber surface temperatures are raised through insulation. A multi-dimensional computational fluid dynamics (CFD) analysis, using a recently developed near wall turbulent heat transfer model, has been employed to investigate the validity of two of these theories. The proposed mechanisms for increased heat transfer in the presence of high wall temperatures are: 1 piston-induced compression heating of the near wall gas which increases the near wall temperature gradient when wall temperatures are high; 2 increased penetration of hot, burned gases into the near wall flow during combustion through reduction of the flame quench distance.
Technical Paper

A Control Oriented Model with Variable Valve Timing for HCCI Combustion Timing Control

2013-04-08
2013-01-0588
Homogeneous Charge Compression Ignition (HCCI) is a promising concept for combustion engines to reduce both emissions and fuel consumption. HCCI combustion control is a challenging issue because there is no direct initiator of combustion. Variable Valve Timing (VVT) is being used in SI engines to improve engine efficiency. When VVT is used in conjunction with HCCI combustion it is an effective way to control the start of combustion. VVT changes the amount of trapped residual gas and the effective compression ratio for each cycle both of which have a strong effect on combustion timing in HCCI engines. To control HCCI combustion, a physics based control oriented model is developed that includes the effect of trapped residual gas on combustion timing. The control oriented model is obtained by taking a physics based model of the reaction kinetics and transient dynamics and systematically reducing the model using simplification of reaction mechanisms.
Technical Paper

A Coupled Tabulated Kinetics and Flame Propagation Model for the Simulation of Fumigated Medium Speed Dual-Fuel Engines

2019-09-09
2019-24-0098
The present work describes the numerical modeling of medium-speed marine engines, operating in a fumigated dual-fuel mode, i.e. with the second fuel injected in the ports. This engine technology allows reducing engine-out emissions while maintaining the engine efficiency and can be fairly easily retrofitted from current diesel engines. The main premixed fuel that is added can be a low-carbon one and can additionally be of a renewable nature, thereby reducing or even completely removing the global warming impact. To fully optimize the operational parameters of such a large marine engine, computational fluid dynamics can be very helpful. Accurately describing the combustion process in such an engine is key, as the prediction of the heat release and the pollutant formation is crucial. Auto-ignition of the diesel fuel needs to be captured, followed by the combustion and flame propagation of the premixed fuel.
Technical Paper

A Critical Evaluation of the Geared Hypocycloid Mechanism for Internal Combustion Engine Application

1988-02-01
880660
The geared hypocycloid mechanism, a kinematic arrangement that provides a straight-line motion, can be used as the basis for an internal combustion engine. Such an engine would have a number of advantages: Perfect balance can be achieved with any number of cylinders. The straight-line motion eliminates the need for a wrist pin bearing, further allowing a very short piston to be used without danger of cocking. Piston side load is virtually eliminated, and “piston slap” will not occur even with a large piston/cylinder clearance. These features make it particularly attractive for small single cylinder engine applications where vibration is undesirable, and also for the uncooled “adiabatic engines”, in which piston cylinder lubrication and friction are major concerns.
X