Refine Your Search

Search Results

Viewing 1 to 10 of 10
Journal Article

A Novel Piston Insulation Technique to Simultaneously Improve Both Heat Loss and Thermal Efficiency for Diesel Engines

2021-04-06
2021-01-0453
This study investigates simultaneous improvement in thermal efficiency and cooling loss in the wider operating condition. To suppress the heat flux of the piston, the piston top and cavity were treated with thin thermal spraying of stainless steel. Thermal diffusivity of stainless steel (X5CrNiMo17-12-2, SUS316) is very low in comparison with the forged steel piston raw material (34CrMoS4, SCM435) to sustain local surface temperature at where spray flame directly interfered. In addition, its surface roughness was very fine finished aiming to reduce the convective heat transfer. The experimental results with the stainless-steel coated piston by utilizing a single cylinder engine showed the significant improvement in both cooling loss and thermal efficiency even in higher load operating conditions with compression ratio of 23.5:1.
Technical Paper

Combined Effects of EGR and Supercharging on Diesel Combustion and Emissions

1993-03-01
930601
An experimental study has been made of a single cylinder, direct-injection diesel engine having a re-entrant combustion chamber designed to enhance combustion so as to reduce exhaust emissions. Special emphasis has been placed on controlling the inert gas concentration in the localized fuel-air mixture to lower combustion gas temperatures, thereby reduce exhaust NOx emission. For this specific purpose, an exhaust gas recirculation (EGR) system, which has been widely used in gasoline engines, was applied to the DI diesel engine to control the intake inert gas concentration. In addition, supercharging and increasing fuel injection pressure prevent the deterioration of smoke and unburned hydrocarbons and improve fuel economy, as well.
Journal Article

Diesel Engine Emissions and Performance Optimization for Neat GTL Fuel

2008-04-14
2008-01-1405
The emissions reduction potential of neat GTL (Gas to Liquids: Fischer-Tropsch synthetic gas-oil derived from natural gas) fuels has been preliminarily evaluated by three different latest-generation diesel engines with different displacements. In addition, differences in combustion phenomena between the GTL fuels and baseline diesel fuel have been observed by means of a single cylinder engine with optical access. From these findings, one of the engines has been modified to improve both exhaust emissions and fuel consumption simultaneously, assuming the use of neat GTL fuels. The conversion efficiency of the NOx (oxides of nitrogen) reduction catalyst has also been improved.
Technical Paper

Effects of Combustion Chamber Geometry on Diesel Combustion

1986-09-01
861186
A study has been made of an automotive direct-injection diesel engine in order to identify the effects of the combustion chamber geometry on combustion, with special emphasis focused on a re-entrant combustion chamber. Conventional combustion chambers and a re-entrant one were compared in terms of the combustion process, engine performance and NOx and smoke emissions. Heat transfer calculations and heat release analyses show that the re-entrant chamber tends to reduce ignition lag due to the higher temperatures of the wall on which injected fuel impinges. Analyses of turbulent flow characteristics in each chamber indicate that the re-entrant chamber enhances combustion because of the higher in-cylinder velocity accompanied by increased turbulence. Further, analyses of in-cylinder gas samples show lower soot levels in the re-entrant chamber. As a result, a good compromise can be achieved between fuel economy and exhaust emissions by retarding the fuel injection timing.
Journal Article

Fundamental Study of Waste Heat Recovery in the High Boosted 6-cylinder Heavy Duty Diesel Engine

2015-04-14
2015-01-0326
In heavy duty diesel engines, the waste heat recovery has attracted much attention as one of the technologies to improve fuel economy further. In this study, the available energy of the waste heat from a high boosted 6-cylinder heavy duty diesel engine which is equipped with a high pressure loop EGR system (HPL-EGR system) and low pressure loop EGR system (LPL-EGR system) was evaluated based on the second law of thermodynamics. The maximum potential of the waste heat recovery for improvement in brake thermal efficiency and the effect of the Rankine combined cycle on fuel economy were estimated for each single-stage turbocharging system (single-stage system) and 2-stage turbocharging system (2-stage system).
Technical Paper

Investigation into the Optimized Heat Release Rate and Corresponding Variation of In-Cylinder Specific Heat Ratio for the Improvement in Thermal Efficiency by Utilizing Two-Zone Combustion Model Analysis

2018-09-10
2018-01-1796
Improvement in heat loss could be an important factor to increase the brake thermal efficiency (BTE) of an internal combustion engine; however, the heat energy saved isn’t all converted to brake work. Theoretically, to increase the conversion efficiency of heat energy into indicated work, the compression (or expansion) ratio and specific heat ratio (γ) are important. Nevertheless, γ has not been well-studied thus far, since it can’t be easily controlled. This study utilized a two-zone model to calculate the time-resolved γ and local excess air ratio of the burned gas (λb), which varied with the heat release rate. The two-zone combustion model, in which the cylinder volume is simply separated into burned and unburned zones to simulate the overall diesel combustion phenomena, was developed to investigate the current status of heterogeneous (diesel) combustion compared to ideal homogeneous combustion.
Journal Article

New Concept for Overcoming the Trade-Off between Thermal Efficiency, Each Loss and Exhaust Emissions in a Heavy Duty Diesel Engine

2016-04-05
2016-01-0729
To overcome the trade-offs of thermal efficiency with energy loss and exhaust emissions typical of conventional diesel engines, a new diffusion-combustion-based concept with multiple fuel injectors has been developed. This engine employs neither low temperature combustion nor homogeneous charge compression ignition combustion. One injector was mounted vertically at the cylinder center like in a conventional direct injection diesel engine, and two additional injectors were slant-mounted at the piston cavity circumference. The sprays from the side injectors were directed along the swirl direction to prevent both spray interference and spray impingement on the cavity wall, while improving air utilization near the center of the cavity.
Technical Paper

Study of Surface Insulation Structures to Reduce Cooling Loss in Heavy-Duty Diesel Engines

2023-04-11
2023-01-0948
Cooling loss reduction is essential to enable further increases in thermal efficiency of reciprocating internal combustion engines. Many in-cylinder cooling loss reduction studies have been carried out by applying various thermal barrier coatings to the piston and/or other in-cylinder surfaces, taking advantage of the lower thermal effusivity of ceramic materials. However, the end result was mostly minimal or in some cases, negative. In our previous study, significant cooling loss reduction was experimentally confirmed by utilizing a mirror-like polished stainless-steel thermal sprayed surface (HVOF: high velocity oxy-fuel) on a forged steel piston. This study firstly investigated an alternative insulating layer material to stainless-steel, along with effects of its thickness on heat transfer by a one-dimensional unsteady numerical model. Results showed that lower thermal effusivity doesn’t always reduce heat transfer, but increases nonuniformity of surface temperature.
Technical Paper

The Control of Diesel Emissions by Supercharging and Varying Fuel-injection Parameters

1992-02-01
920117
A study has been made of an automotive direct injection diesel engine designed to reduce exhaust emissions, particularly NOx and particulates, without performance deterioration. Special emphasis has been placed on air-fuel mixing conditions controlled by the fuel injection rate, the intake swirl ratio, and the intake boost pressure. By means of increasing the injection rate, ignition delay can be shortened enough to improve particulate emissions at retarded injection timings. Enhancing the intake swirl velocity contributes to the reduction of soot emission in spite of the deterioration of NOx emission. Supercharging can favorably enhance diffusion combustion resulting in improved fuel economy for retarded injection timings and reduced emissions. As a result, a good compromise can be achieved between fuel economy and exhaust emissions by increasing the injection rate along with retarding the injection timing. Supercharging was found to be more favorable than swirl enhancement.
Technical Paper

What Are the Barriers Against Brake Thermal Efficiency beyond 55% for HD Diesel Engines?

2021-09-05
2021-24-0039
This study focused on the technology integration to aim beyond 60% indicated thermal efficiency (ITE) with a single-cylinder heavy-duty diesel engine as an alternative to achieve 55% brake thermal efficiency (BTE) with multiple-cylinder engines. Technology assessment was initially carried out by means of a simple chart of showing ITE and exhaust heat loss as functions of cooling loss and heat conversion efficiency into indicated work. The proposed compression ratio (28:1), excess air ratio and new ideal thermodynamic cycle were then determined by a simple cycle calculation. Except for peak cylinder pressure constraint for each engine, the technical barriers for further ITE improvement are mainly laid in cooling loss reduction, fuel-air mixture formation improvement, and heat release rate optimization under very high temperature and density conditions with very high compression ratio (smaller cavity volume).
X