Criteria

Text:
Topic:
Display:

Results

Viewing 1 to 30 of 3681
Event
2014-10-20
Event
2014-10-20
The industry continues to work on understanding the interaction of lubricating fluids with engine hardware in order to improve vehicle efficiency, durability, and performance. The Engine Lubricants Session presents a variety of papers dealing with advances in engine oils and their relationship to improved hardware performance.
Event
2014-10-20
This session reviews advancements in heavy-duty engine oil technology and test methodology, focusing on achieving future emissions, durability and fuel efficiency expectations both in North America and Europe.
Training / Education
2014-08-11
Lubricating fluids are the lifeblood of modern engines, performing numerous vital functions from reducing system friction, temperature, and fuel consumption to minimizing tailpipe emissions. This comprehensive seminar covers the latest developments in lubricating fluids technologies and explores the relationships between lubricating fluids and emissions, after-treatment devices, bio-fuels, and fuel economy. Fundamentals of crankcase lubrication, including the properties and performance requirements of global base stocks and lubricants will be covered. The seminar will further explore the need for lubricating systems to possess thermal and oxidative stability sufficient to withstand the rigors of low-heat-rejection, high performance diesel engines or other modern engines equipped with various emission control devices. Case studies will be utilized to demonstrate the existence of overlapping phenomena aimed at extending oil life and protecting key mechanical components.
Event
2014-06-10
Event
2014-06-10
Training / Education
2014-04-28
Improving vehicular fuel efficiency is of paramount importance to the global economy. Governmental regulations, climate change and associated health concerns, as well as the drive towards energy independence, have created a technical need to achieve greater fuel efficiency. While vehicle manufacturers are focusing efforts on improved combustion strategies, smaller displacement engines, weight reduction, low friction surfaces, etc., the research involved in developing fuel efficient engine oils has been less publicized. This seminar will highlight the role of lubricants in improving fuel efficiency and provide strategies for selecting the best oil for a given application. The course begins with a brief overview of the fuel consumption regulations and global perspective of passenger car lubricants and diesel oil specifications in North America, Europe and Asia. Limitations and advantages of various methods to measure fuel consumption in a variety of bench tests, dyno tests and actual vehicles will be presented.
Event
2014-04-08
The industry continues to work on understanding the interaction of lubricating fluids with engine hardware in order to improve vehicle efficiency, durability, and performance. The Engine Lubricants Session presents a variety of papers dealing with advances in engine oils and their relationship to improved hardware performance.
Event
2014-04-08
This session addresses advancements in diesel engine oil formulations technology and used lubricants testing methodologies. Special focus is on understanding fundamental knowledge in achieving combination of the green gases emissions limits, hardware/lubricant durability and overall fuel efficiency expectations from the perspective of OEMs, legislators and end users.
WIP Standard
2014-04-08
This SAE Information Report lists engine and laboratory tests for service fill engine oils which are associated with specifications and classifications established outside of North America. These specifications and classifications include those developed prior to June 1, 2006 June 1, 2001, by International Technical Societies as well as individual original equipment manufacturers. The information contained within this report applies to engine oils utilized in gasoline and diesel powered automotive vehicles.
WIP Standard
2014-04-04
This SAE Information Report reviews the various physical and chemical properties of engine oils and provides references to test methods and standards used to measure these properties. It also includes general references on the subject of engine oils, base stocks, and additives.
Standard
2014-04-03
This method is designed to evaluate the coking propensity of synthetic ester-based aviation lubricants under two phase air-oil mist conditions as found in certain parts of a gas turbine engine, for instance, bearing chamber vent lines. Based on the results from round robin data in 2008-2009 from four laboratories, this method is currently intended to provide a comparison between lubricants as a research tool; it is not currently a satisfactory pass/fail test. At this juncture a reference oil may improve reproducibility (precision between laboratories); a formal precision statement will be given when there is satisfactory data and an agreed on, suitable reference oil if applicable.
Technical Paper
2014-04-01
Mathieu Picard, Camille Baelden, Tian Tian, Takayuki Nishino, Eiji Arai, Hiroyuki Hidaka
The rotary engine provides high power density compared to piston engine, but one of its downside is higher oil consumption. A model of the oil seals is developed to calculate internal oil consumption (oil leakage from the crankcase through the oil seals) as a function of engine geometry and operating conditions. The deformation of the oil seals trying to conform to housing distortion is calculated to balance spring force, O-ring and groove friction, and asperity contact and hydrodynamic pressure at the interface. A control volume approach is used to track the oil over a cycle on the seals, the rotor and the housing as the seals are moving following the eccentric rotation of the rotor. The dominant cause of internal oil consumption is the non-conformability of the oil seals to the housing distortion generating net outward scraping, particularly next to the intake and exhaust port where the housing distortion valleys are deep and narrow. Simulation with housing transverse waviness shows that increasing spring force can lead to an unexpected increase in internal oil consumption.
Technical Paper
2014-04-01
Shubham Sharma, Himanshu Tyagi, Naveen Kumar, Vikrant Yadav
For the last decade, the lubricant industry has been trying to formulate biodegradable lubricants with technical characteristics superior to those based on petroleum. A renewable resource, mahua oil, is good alternative to mineral oil because of its environmentally friendly, non toxic and readily biodegradable nature. The triacylglycerol structure of mahua oil is amphiphilic in character that makes it an excellent candidate as lubricant and functional fluid. It is also very attractive for industrial applications that have potential for environmental contact through accidental leakage, dripping or generates large quantities of after-use waste materials requiring costly disposal. Vegetable oil in its natural form has limited use as industrial fluids due to poor thermo-oxidation stability, low temperature behavior and other tribochemical degrading processes. Therefore, in the present paper epoxidation and trans-esterification were employed to overcome the mentioned drawbacks of vegetable oil and explore the possibility of modified mahua oil as lubricant because double bonds present in triacylglycerol structure offer sites for additional functionalization This paper compares the lubricating property and mechanical stability of four samples of epoxidized mahua oil, trans-esterified mahua oil, refined mahua oil and a mineral oil based lubricant.
Technical Paper
2014-04-01
Antonino La Rocca, Gianluca Di Liberto, Paul Shayler, Christopher Parmenter, Mike Fay
The determination of size distribution of soot particles and agglomerates in oil samples using a Nanosight LM14 to perform Nanoparticle Tracking Analysis (NTA) is described. This is the first application of the technique to sizing soot-in-oil agglomerates and offers the advantages of relatively high rates of sample analysis and low cost compared to Transmission Electron Microscopy (TEM). Lubricating oil samples were drawn from the sump of automotive diesel engines run under a mix of light duty operating conditions. The oil samples were diluted with heptane before analysing. Results from NTA analysis were compared with the outputs of a more conventional analysis based on Dynamic Light Scattering (DLS). This work shows that soot-in-oil exists as agglomerates with average size of 115 nm. This is also in good agreement with TEM analysis carried out in a previous work. NTA can measure soot particles in polydisperse oil solutions and report the size distribution of soot-in-oil aggregates. NTA allows for an estimation of soot mass contained in the soot-laden oil samples.
Technical Paper
2014-04-01
Achombili Asango, Antonino La Rocca, Paul Shayler
Abstract The influence of size and concentration of carbon nanoparticle on the viscosity of an SAE 5W-30 lubricant oil has been investigated experimentally. Data were collected for oil samples drawn from sump of light duty automotive diesel engines. The average size of soot particles in the used oil samples was in the range of 180-320nm with concentrations ranging from 0 to 2 percentage by weight (wt. %.). A Brookfield DV-II Pro rotary viscometer was used to measure dynamic viscosity at low shear rates and temperatures of 40°C and 90°C. Nanoparticle concentration and particle size distribution were evaluated using Thermo-Gravimetric Analysis (TGA) and Dynamic Light Scattering (DLS) respectively. The viscosity of suspensions of graphite powder in lubricant oil was also investigated for concentrations ranging from 0 to 2 wt. %. The results show that dynamic viscosity increases with increasing soot content and decreasing temperature. Particle size effects are more significant for high soot content.
Technical Paper
2014-04-01
Takumaru Sagawa, Takuya Katayama, Rika Suzuki, Sachiko Okuda
Abstract A suitable GF-5 engine oil formulation is investigated to improve the fuel economy of gasoline engines with hydrogen-free DLC-coated valve lifters. Molybdenum dithocarbamate (MoDTC) is shown to be a suitable friction modifier for low viscosity grade engine oils like 0W-20. A suitable Ca salicylate detergent is also determined from several types examined for maximizing the friction reduction effects of MoDTC. The most suitable Ca salicylate has a chemical structure capable of forming a borophosphate glass film on metal surfaces, which is known to improve the effects of MoDTC. A high viscosity index Group III base oil (VI>140) is also effective in improving fuel efficiency. It is further clarified that the structural design of the polymethacrylate viscosity modifier is another important factor in reducing engine friction.
Technical Paper
2014-04-01
Varun Pathak, Dileep Gupta, Naveen Kumar
Abstract The world today is facing severe oil crisis and environmental pollution, thus there is a great urgency of developing and applying bio based products as a substitute to mineral oil based products. Rapid industrialization and automation in the last decade has increased the demand of mineral oil based lubricant that will get exhausted in the years to come. Also in addition to the above fact, the biodegradability of mineral-oil based lubricants is around 25% maximum. About 50% of all lubricants sold worldwide end up in the Environment. Due to extensive use of mineral oil based lubricants, several environmental issues such as surface water and groundwater contamination, Air pollution, soil contamination, agricultural product and food contamination are emerging very rapidly. This has led the researchers to look for plant oil based bio- lubricant as an alternative to mineral oil based lubricant. Vegetable oils are renewable raw materials that possess certain excellent frictional properties e.g. good lubricity, low volatility, high viscosity index, solvency for lubricant additives, and easy miscibility with other fluids etc.
Technical Paper
2014-04-01
Akihiro Honda, Motoichi Murakami, Yuichiro Kimura, Katsuhiro Ashihara, Shinichi Kato, Yuichiro Kajiki
Fuel efficiency improvement measures are focusing on both cold and hot conditions to help reduce CO2 emissions. Recent technological trends for improving fuel economy such as hybrid vehicles (HVs), engine start and stop systems, and variable valve systems feature expanded use of low-temperature engine operation regions. Under cold conditions (oil temperature: approximately 30°C), fuel consumption is roughly 20% greater than under hot conditions (80°C). The main cause of the increased friction under cold conditions is increased oil viscosity. This research used the motoring slipping method to measure the effect of an improved crankshaft bearing, which accounts for a high proportion of friction under cold conditions. First, the effect of clearance was investigated. Although increasing the clearance helped to decrease friction due to the oil wedge effect, greater oil leakage reduced the oil film temperature increase generated by the friction. Consequently, the friction reduction effect was less than that predicted by the lubrication calculation.
Technical Paper
2014-04-01
Orian Welling, James Moss, John Williams, Nick Collings
One of the limits on the maximum fuel efficiency benefit to be gained from turbocharged, downsized gasoline engines is the occurrence of low speed pre-ignition (LSPI). LSPI may lead to high pressures and extreme knock (megaknock or superknock) which can cause severe engine damage. Though the mechanism leading to megaknock is not completely resolved, LSPI is thought to arise from local auto-ignition of areas in the cylinder which are rich in low ignition delay “contaminants” such as engine oil and/or heavy ends of gasoline. These contaminants are introduced to the combustion chamber at various points in the engine cycle (e.g. entering from the top land crevice during blow-down or washed from the cylinder walls during DI wall impingement). This paper describes a method for testing the propensity of different contaminants to cause a local pre-ignition in a gasoline engine. During one cycle, a small amount of contaminant is injected into one cylinder of a 4 cylinder engine. The spark is suppressed during this or the following cycle to allow detection of local pre-ignition events after spark timing.
Technical Paper
2014-04-01
Orian Welling, Nick Collings, John Williams, James Moss
Abstract One of the limits on the maximum fuel efficiency benefit to be gained from turbocharged, downsized gasoline engines is the occurrence of pre-ignitions at low engine speed. These pre-ignitions may lead to high pressures and extreme knock (megaknock or superknock) which can cause severe engine damage. Though the mechanism leading to megaknock is not completely resolved, pre-ignitions are thought to arise from local autoignition of areas in the cylinder which are rich in low ignition delay “contaminants” such as engine oil and/or heavy ends of gasoline. These contaminants are introduced to the combustion chamber at various points in the engine cycle (e.g. entering from the top land crevice during blow-down or washed from the cylinder walls during DI wall impingement). This paper presents results from tests in which model “contaminants”, consisting of engine lubricant base stocks, base stocks mixed with fuel and base stocks mixed with one or more additives were injected directly into a test engine to determine their propensity to ignite.
Technical Paper
2014-04-01
Yunliang Qi, Yaqi Xu, Zhi Wang, Jianxin Wang
Super knock which occurs in highly boosted spark ignition engines in low speed pre-ignition regime can lead to severe engine damage. However, super knock occurs occasionally, it is difficult to clearly identify the causes. The widely accepted assumption for the cause of this phenomenon is oil intrusion. Most of oils have been proved to have higher cetane number than n-heptane dose, indicating that the intruded oil is very liable to auto-ignition in a boosted engine. Although there have been reported the type of base oil and additive has significant effect on pre-ignition frequency, the oil induced super knock is still so far not supported by any direct evidence. This paper presents the effect of direct oil intrusion into cylinder on super knock. The experiment was carried out in a single cylinder engine. The diluted oil by gasoline with different ratio was directly injected into cylinder using a modified single-hole injector with 4MPa injection pressure. The results showed that oil intrusion before TDC could indeed induce pre-ignition then cause knock.
Technical Paper
2014-04-01
Simon F. Dingle, Alasdair Cairns, Hua Zhao, John Williams, Oliver Williams, Rana Ali
Abstract This work was concerned with study of lubricant introduced directly into the combustion chamber and its effect on pre-ignition and combustion in an optically accessed single-cylinder spark ignition engine. The research engine had been designed to incorporate full bore overhead optical access capable of withstanding peak in-cylinder pressures of up to 150bar. An experiment was designed where a fully formulated synthetic lubricant was deliberately introduced through a specially modified direct fuel injector to target the exhaust area of the bore. Optical imaging was performed via natural light emission, with the events recorded at 6000 frames per second. Two port injected fuels were evaluated including a baseline commercial grade gasoline and low octane gasoline/n-heptane blend. The images revealed the location of deflagration sites consistently initiating from the lubricant itself. With the high octane fuel (and the limited load adopted for safe optical work) lubricant induced pre-ignition was observed, but without knock.
Technical Paper
2014-04-01
Frank DeBlase, Faith Corbo, Cyril Migdal
Abstract To gain some insight into friction modifier (FM) performance retention in engine oils, we have developed a series of tribology measurements to measure and understand friction reduction performance retention by extended tribology measurements of the changes in the coefficient of friction (COF) with time. In some cases, after several days of data collection, these tests give us insight into how friction modifiers might perform in real engine operating conditions with typical long oil drain intervals. Results are presented from both a series of sequential tribology oil studies with and without FMs, as well as longer isothermal hold studies, developed using a Cameron Plint TE-77 cylinder-on-plate, and PCS-Instruments Mini-Traction-Machine ball-on-disk friction instruments. Specifically studied, were Glycerolmonooleate (GMO), Molybdenum dialkyldithiocarbamate (MoDTC), and an experimental organic friction modifier (Exp-OFM1) of a completely ashless (containing no inorganic metals) C, H, O, N surface active molecular structure.
Viewing 1 to 30 of 3681

Filter

  • Range:
    to:
  • Year: