Criteria

Text:
Topic:
Display:

Results

Viewing 1 to 30 of 3955
2017-10-19 ...
  • October 19-20, 2017 (8:30 a.m. - 4:30 p.m.) - Shanghai, China
Training / Education Classroom Seminars
Lubricating fluids are the lifeblood of modern engines, performing numerous vital functions from reducing system friction, temperature, and fuel consumption to minimizing tailpipe emissions. This comprehensive seminar covers the latest developments in lubricating fluids technologies and explores the relationships between lubricating fluids and emissions, after-treatment devices, bio-fuels, and fuel economy. Fundamentals of crankcase lubrication, including the properties and performance requirements of global base stocks and lubricants will be covered.
2017-05-04 ...
  • May 4-5, 2017 (8:30 a.m. - 4:30 p.m.) - Troy, Michigan
  • October 17-18, 2017 (8:30 a.m. - 4:30 p.m.) - Shanghai, China
Training / Education Classroom Seminars
Improving vehicular fuel efficiency is of paramount importance to the global economy. Governmental regulations, climate change and associated health concerns, as well as the drive towards energy independence, have created a technical need to achieve greater fuel efficiency. While vehicle manufacturers are focusing efforts on improved combustion strategies, smaller displacement engines, weight reduction, low friction surfaces, etc., the research involved in developing fuel efficient engine oils has been less publicized.
2017-04-24 ...
  • April 24-28, 2017 (8:00 a.m. - 6:00 p.m.) - Troy, Michigan
Training / Education Classroom Engineering Academies
The Transmission Engineering Academy covers the sciences of automotive passenger car and light truck engineering principles and practices necessary to effectively understand, develop, specify and start the design process. Topics include advances in manual, automatic, automated manual, and continuously variable transmission technology, materials and processes applicable to the major components within these transmissions, calibration of these systems unto themselves and integration into the full vehicle powertrain.
2017-04-05
Event
In the industry there is continuing work on understanding the interaction of lubricating fluids with driveline hardware and on improving the fluids used in these applications. In this session are presented a variety of papers dealing with different applications where the interaction of driveline fluids with equipment is important.
2017-04-04
Event
The industry continues to work on understanding the interaction of lubricating fluids with engine hardware in order to improve vehicle efficiency, durability, and performance. The Engine Lubricants Session presents a variety of papers dealing with advances in engine oils and their relationship to improved hardware performance.
2017-04-04
Event
This session describes the design, modeling and performance validation of cylinder heads, lubrication systems and pumps, coolant systems and pumps, intake manifolds, exhaust manifolds, and engine block structures.`
2017-04-04
Event
This session describes the design, modeling and performance validation of cylinder heads, lubrication systems and pumps, coolant systems and pumps, intake manifolds, exhaust manifolds, and engine block structures.`
2017-04-04
Event
This session reviews advancements in heavy-duty engine oil technology and test methodology, focusing on achieving future emissions, durability and fuel efficiency expectations both in North America and Europe.
2017-04-04
Event
This technical session focuses on fundamental and applied research that lowers frictional energy losses and enhances reliability and durability of automotive components. The topics include, but not limited to engine and drivetrain tribology, seals, bearing and gear lubrication, materials tribology, surface engineering, lubricants and additives, computer-aided tribology, tribotesting, as well as friction, wear and lubrication fundamentals.
2017-03-28
Technical Paper
2017-01-0885
Bhuvenesh Tyagi, Vishnu Vijayakumar, Shyam Singh, Ajay Kumar Sehgal, R Suresh
API-CF grade lubricants cater to majority of light and heavy duty commercial vehicles on road in India. Soot accumulation in lubricating oil can result in engine wear and lubricant's viscosity increase thereby affecting its pumping ability and drain interval. Due to faster lubricant degradation and with emergence of newer engine technologies, there is increasing demand on improving performance of lubricants particularly with respect to soot dispersancy. This paper describes the development of test method for evaluating the lubricant's dispersancy/anti-wear characteristics up to 6% soot level on a commercial BS II, 4-cylinder turbocharged diesel engine. The test severity was generated in order to match real time environment by incorporating various engine hardware modifications like inlet air restriction, retarded injection timing, increased fuel delivery, auxiliary oil sump unit, and change in injector pressures.
2017-03-28
Technical Paper
2017-01-0888
Prashant Kumar, Reji Mathai, Sanjeev KUMAR, Ashish Kachhawa, Ajay Kumar Sehgal, Snigdhamayee Praharaj
The growing transportation sector worldwide has opened up a way forward not only for the scientists & researchers but also for the OEMs to find out the options for fuel efficient automotive vehicles with reduced emissions during their usage. The demand of automotive vehicles has been doubled in last few years and in turn the market for lubricants and transmission fluids are flourishing. Several new formulations of lubricants are getting popularized with major suppliers to achieve the end user expectation in terms of fuel economy benefits, engine life and emissions. The market trend is continuously moving towards the improvement in lubricant formulation to the lower viscosity ranges and in this direction Indian Oil Corporation Limited is into development of multi-grade low viscosity range of engine oils (lubricants) which is said to be providing the benefits in terms of fuel economy.
2017-03-28
Technical Paper
2017-01-0878
Julia Carrell, Tom Slatter, Uel Little, Roger Lewis
The interaction of three bio-lubricant base oil candidates with seventeen combinations of surface treatment were studied, comparing wear scar volumes and coefficient of friction results. Substrates were initially ground or superfinished, a combination of Dymon-iC™ DLC, an ultra-fine shot blasting method doped with Tin and Molybdenum Disulfide, a calcium based chemical dip and nano fullerene, were used. DLC is a well reported to reduce frication and wear, some reports suggest wear in coated contacts is independent of the type of lubricant used, others report that bio-lubricants offer reduced friction and wear in combination with DLC. Shot blasting can also reduce wear and friction, dimples act as lubricant reservoirs, making hydrodynamic lubrication more likely. Work has also explored the performance of surface texturing in combination with coatings, some finding higher friction with surface texturing and DLC.
2017-03-28
Technical Paper
2017-01-0887
Dairene Uy, George Pranis, Anthony Morelli, Arup Gangopadhyay, Alexander Michlberger, Nicholas Secue, Mike Kinzel, Tina Adams, Kevin Streck, Michael Lance, Andrew Wereszczak
Deposit formation on the turbocharger compressor housing can lead to compressor efficiency degradation, which leads to loss of fuel economy and increase in CO2 and NOx emissions. To understand the role that engine oil composition and formulation play in these deposits which arise from oil aerosols and particulates from the closed crankcase ventilation, fIve different lubricants were run in a fired engine test to evaluate turbocharger compressor efficiency. Basestock group, additive package, and viscosity modifier treat rate were varied in the lubricants tested. After each test was completed the turbocharger compressor cover and backplate deposits were characterized. A laboratory oil mist coking rig has also been constructed, which generated deposits having the same characteristics as those from the engine tests. By analyzing results from both lab and engine tests, correlations between deposit characteristics and their effect on compressor efficiency were observed.
2017-03-28
Technical Paper
2017-01-0886
Liyan Feng, Ximing DI, Wuqiang LONG, Yao Wu, Chao Liu, Hang Lv
The combustion of cylinder lubricating oil is one of the major resources of PM emissions of low-speed 2-stroke marine engines. For pre-mixed gas engines, the auto-ignition of cylinder oil might result in knock or more hazard abnormal combustion — pre-ignition. The evaporation is a key process of the auto-ignition of cylinder oil droplets. The evaporation behavior has a profound impact on the auto-ignition and combustion processes of cylinder oil droplets. This paper applied a suspending apparatus to investigate the evaporation characteristics of cylinder oil droplets and base oil droplets. The effects of environment temperature and droplet diameter on the evaporation process were measured and analyzed. The results indicate that the evaporation of cylinder oil includes heating, evaporation, pyrolysis, and polymerization. Under high temperature conditions, the pyrolysis process caused the explosion of the oil droplets, and the evaporation curve appeared intensive waving.
2017-03-28
Technical Paper
2017-01-1078
Walid Ashraf, Sherif Khedr, Aya Diab, Hashim Elzaabalawy
Abstract A throttle valve is one of the main components of the intake system of a vehicle and is used to control the air flow rate into the combustion chamber at different engine speeds. Consequently, it has considerable effect on the engine power and performance especially at high engine speeds. The butterfly throttle valve is more common in commercial vehicles due to its simplicity. However, the butterfly throttle plate may affect the engine performance by incurring some pumping losses at high engine speeds even with the plate at wide open throttle (WOT) position. Hence it is proposed in this research work to replace and compare the performance of a spark ignition engine butterfly throttle valve to a newly designed barrel-shaped one with regards to the induced air mass flow rate. The main benefit of the proposed barrel-shaped throttle valve is the elimination of the flow restriction at WOT and high engine speeds.
2017-03-28
Technical Paper
2017-01-0446
Xiao Chuan Xu, Xiuyong Shi, Jimin Ni, Jiaqi Li, Xiaochuan Xu Sr.
Abstract Oil pump is a critical part of engine lubrication system. The performance and efficiency of oil pump are greatly affected by vibration and noise, which would lead to the pump service life decreasing and pump body easily wearing. Hence the vibration and noise of oil pump is of great importance to study. In this paper, a FEA model of the variable displacement oil pump(VDOP) was established to carry on the modal and noise analysis, while the geometric structure was optimized with test verification. The modal analysis of VDOP was carried out by ABAQUS software, the 3-D unsteady flow field in VDOP was simulated by Pumplinx software, and the sound field was analyzed by ACTRAN acoustic module. Using a special oil pump test bench combined with B&K PULSE vibration and noise test equipment, the NVH and comprehensive performance experiment of the VDOP were carried out here.
2017-03-28
Technical Paper
2017-01-0464
Guang Wang, Xueyuan Nie, Jimi Tjong
Abstract Friction between the piston and cylinder accounts for large amount of the friction losses in an internal combustion (IC) engine. Therefore, any effort to minimize such a friction will also result in higher efficiency, lower fuel consumption and reduced emissions. Plasma electrolytic oxidation (PEO) coating is considered as a hard ceramic coating which can provide a dimpled surface for oil retention to bear the wear and reduce the friction from sliding piston rings. In this work, a high speed pin-on-disc tribometer was used to generate the boundary, mixed and hydrodynamic lubrication regimes. Five different lubricating oils and two different loads were applied to do the tribotests and the COFs of a PEO coating were studied. The results show that the PEO coating indeed had a lower COF in a lower viscosity lubricating oil, and a smaller load was beneficial to form the mixed and hydrodynamic lubricating regimes earlier.
2017-03-28
Technical Paper
2017-01-1087
Pengfei Zang, Zhe Wang, Yu Fu, Chenle Sun
Abstract The Linear Internal Combustion Engine-Linear Generator Integrated System (LICELGIS) is different from conventional crank-based engine for reducing frictional losses by eliminating the crankshaft. Thus, the LICELGIS piston stroke is not constrained geometrically and the system compression ratio is variable. During steady-state operation, the LICELGIS converts the fuel chemical energy into electric power with piston assembly reciprocating motion, which can be used as a range-extender in hybrid electric vehicles. The LICELGIS scavenging process is prerequisite and key for the system steady-state operation, which has remarkable influence on mixture gas and, eventually, on engine combustion performance. In order to achieve high scavenging performance, a LICELGIS is investigated in this paper. The LICELGIS motion characteristics and scavenging process were analyzed.
Viewing 1 to 30 of 3955

Filter

  • Range:
    to:
  • Year: