Criteria

Text:
Topic:
Display:

Results

Viewing 1 to 30 of 3680
Event
2014-10-20
Event
2014-10-20
The industry continues to work on understanding the interaction of lubricating fluids with engine hardware in order to improve vehicle efficiency, durability, and performance. The Engine Lubricants Session presents a variety of papers dealing with advances in engine oils and their relationship to improved hardware performance.
Event
2014-10-20
This session reviews advancements in heavy-duty engine oil technology and test methodology, focusing on achieving future emissions, durability and fuel efficiency expectations both in North America and Europe.
Training / Education
2014-08-11
Lubricating fluids are the lifeblood of modern engines, performing numerous vital functions from reducing system friction, temperature, and fuel consumption to minimizing tailpipe emissions. This comprehensive seminar covers the latest developments in lubricating fluids technologies and explores the relationships between lubricating fluids and emissions, after-treatment devices, bio-fuels, and fuel economy. Fundamentals of crankcase lubrication, including the properties and performance requirements of global base stocks and lubricants will be covered. The seminar will further explore the need for lubricating systems to possess thermal and oxidative stability sufficient to withstand the rigors of low-heat-rejection, high performance diesel engines or other modern engines equipped with various emission control devices. Case studies will be utilized to demonstrate the existence of overlapping phenomena aimed at extending oil life and protecting key mechanical components.
Event
2014-06-10
Event
2014-06-10
Training / Education
2014-04-28
Improving vehicular fuel efficiency is of paramount importance to the global economy. Governmental regulations, climate change and associated health concerns, as well as the drive towards energy independence, have created a technical need to achieve greater fuel efficiency. While vehicle manufacturers are focusing efforts on improved combustion strategies, smaller displacement engines, weight reduction, low friction surfaces, etc., the research involved in developing fuel efficient engine oils has been less publicized. This seminar will highlight the role of lubricants in improving fuel efficiency and provide strategies for selecting the best oil for a given application. The course begins with a brief overview of the fuel consumption regulations and global perspective of passenger car lubricants and diesel oil specifications in North America, Europe and Asia. Limitations and advantages of various methods to measure fuel consumption in a variety of bench tests, dyno tests and actual vehicles will be presented.
Event
2014-04-08
The industry continues to work on understanding the interaction of lubricating fluids with engine hardware in order to improve vehicle efficiency, durability, and performance. The Engine Lubricants Session presents a variety of papers dealing with advances in engine oils and their relationship to improved hardware performance.
WIP Standard
2014-04-08
This SAE Information Report lists engine and laboratory tests for service fill engine oils which are associated with specifications and classifications established outside of North America. These specifications and classifications include those developed prior to June 1, 2006 June 1, 2001, by International Technical Societies as well as individual original equipment manufacturers. The information contained within this report applies to engine oils utilized in gasoline and diesel powered automotive vehicles.
Event
2014-04-08
This session addresses advancements in diesel engine oil formulations technology and used lubricants testing methodologies. Special focus is on understanding fundamental knowledge in achieving combination of the green gases emissions limits, hardware/lubricant durability and overall fuel efficiency expectations from the perspective of OEMs, legislators and end users.
WIP Standard
2014-04-04
This SAE Information Report reviews the various physical and chemical properties of engine oils and provides references to test methods and standards used to measure these properties. It also includes general references on the subject of engine oils, base stocks, and additives.
Standard
2014-04-03
This method is designed to evaluate the coking propensity of synthetic ester-based aviation lubricants under two phase air-oil mist conditions as found in certain parts of a gas turbine engine, for instance, bearing chamber vent lines. Based on the results from round robin data in 2008-2009 from four laboratories, this method is currently intended to provide a comparison between lubricants as a research tool; it is not currently a satisfactory pass/fail test. At this juncture a reference oil may improve reproducibility (precision between laboratories); a formal precision statement will be given when there is satisfactory data and an agreed on, suitable reference oil if applicable.
Technical Paper
2014-04-01
Xingyu Liang, Yin Liu, Ge-Qun Shu, Zhengnan Yuhan, Yuesen Wang
Abstract In the present paper, a three-dimensional numerical analysis model based on elastic deformation was applied to analyze the compression top piston ring-liner friction of heavy duty diesel engine, considering the rheological lubrication, the newton fluid model was applied to the numerical analysis. The result illuminates that the turning point of friction transforms from rigid hydrodynamic lubrication to elastohydrodynamic lubrication is around 4°∼8°CRA BTDC (crank angle before top dead center) on the compression stroke in this calculation model. In comparison, the surface elastic deformation was started near 10°CRA BTDC on the compression stroke which is significantly clearer than the lubricant elastic deformation. A friction tester was applied to verify the calculation results. The experiment proved that the model based on elastic deformation is closer to the actual situation and the calculation result at a lower temperature is more precise than that of higher temperature.
Technical Paper
2014-04-01
Shigenori Ichinose, Kiyoshi Iwade, Yoshiharu Hata
Abstract The oil flow in the oil ring groove was observed in order to improve the oil ejection efficiency in the oil ring groove. The oil flow was visualized with a clear head piston using fluorescing agent and particles under motoring condition. The influences of oil ring specification on the direction and the velocity of the oil flow were evaluated. The velocity of the oil ring with oil vent holes was faster than that of the oil ring without oil vent holes. In the case of the oil ring with vent holes, the reverse flow of the oil toward the front side was observed in the back clearance. Therefore, oil vent holes can change the oil flow and improve the oil ejection efficiency in the oil ring groove.
Technical Paper
2014-04-01
Michael J. Plumley, Victor Wong, Mark Molewyk, Soo-Youl Park
Abstract Lubricant viscosity along the engine cylinder liner varies by an order of magnitude due to local temperature variation and vaporization effects. Tremendous potential exists for fuel economy improvement by optimizing local viscosity variations for specific operating conditions. Methods for analytical estimation of friction and wear in the power-cylinder system are reviewed and used to quantify opportunities for improving mechanical efficiency and fuel economy through lubricant formulation tailored specifically to liner temperature distributions. Temperature dependent variations in kinematic viscosity, density, shear thinning, and lubricant composition are investigated. Models incorporating the modified Reynolds equation were used to estimate friction and wear under the top ring and piston skirt of a typical 11.0 liter diesel engine. Friction losses were analyzed in the liner local position and temperature domains, and practical considerations for obtaining optimal viscosity profiles are reviewed with regard to the limitations of viscosity modifiers.
Technical Paper
2014-04-01
Anshuman Shrivastava, Mark Scheel, Julie Strama
Abstract A majority of the plastics manufacturing operations are dependent on the formability of the molten thermoplastics. Ability of the material to flow at a set temperature influences the formability and the overall polymer melt process. Lubricating additive technologies are being developed to engineer the melt flow performance of the resin, promoting the compounding and molding process such as to reduce torque on the motor, reduced shear degradations, enhance uniform filling of hard-to-fill section, promoting thin wall molding, and influence the overall cycle time. Various lubricants are used in formulations to supplement superior flow and metal release with minimal effect on mechanical properties. This paper discusses the methodology to characterize the effectiveness of melt flow additives through comparing two different processing aids in Polybutylene terephthalate (PBT) polyester filled and unfilled matrix and imply differences in processing. The learning from findings in this paper can be adapted to other resin systems as applicable.
Technical Paper
2014-04-01
Achombili Asango, Antonino La Rocca, Paul Shayler
Abstract The influence of size and concentration of carbon nanoparticle on the viscosity of an SAE 5W-30 lubricant oil has been investigated experimentally. Data were collected for oil samples drawn from sump of light duty automotive diesel engines. The average size of soot particles in the used oil samples was in the range of 180-320nm with concentrations ranging from 0 to 2 percentage by weight (wt. %.). A Brookfield DV-II Pro rotary viscometer was used to measure dynamic viscosity at low shear rates and temperatures of 40°C and 90°C. Nanoparticle concentration and particle size distribution were evaluated using Thermo-Gravimetric Analysis (TGA) and Dynamic Light Scattering (DLS) respectively. The viscosity of suspensions of graphite powder in lubricant oil was also investigated for concentrations ranging from 0 to 2 wt. %. The results show that dynamic viscosity increases with increasing soot content and decreasing temperature. Particle size effects are more significant for high soot content.
Technical Paper
2014-04-01
Takumaru Sagawa, Takuya Katayama, Rika Suzuki, Sachiko Okuda
Abstract A suitable GF-5 engine oil formulation is investigated to improve the fuel economy of gasoline engines with hydrogen-free DLC-coated valve lifters. Molybdenum dithocarbamate (MoDTC) is shown to be a suitable friction modifier for low viscosity grade engine oils like 0W-20. A suitable Ca salicylate detergent is also determined from several types examined for maximizing the friction reduction effects of MoDTC. The most suitable Ca salicylate has a chemical structure capable of forming a borophosphate glass film on metal surfaces, which is known to improve the effects of MoDTC. A high viscosity index Group III base oil (VI>140) is also effective in improving fuel efficiency. It is further clarified that the structural design of the polymethacrylate viscosity modifier is another important factor in reducing engine friction.
Technical Paper
2014-04-01
Varun Pathak, Dileep Gupta, Naveen Kumar
Abstract The world today is facing severe oil crisis and environmental pollution, thus there is a great urgency of developing and applying bio based products as a substitute to mineral oil based products. Rapid industrialization and automation in the last decade has increased the demand of mineral oil based lubricant that will get exhausted in the years to come. Also in addition to the above fact, the biodegradability of mineral-oil based lubricants is around 25% maximum. About 50% of all lubricants sold worldwide end up in the Environment. Due to extensive use of mineral oil based lubricants, several environmental issues such as surface water and groundwater contamination, Air pollution, soil contamination, agricultural product and food contamination are emerging very rapidly. This has led the researchers to look for plant oil based bio- lubricant as an alternative to mineral oil based lubricant. Vegetable oils are renewable raw materials that possess certain excellent frictional properties e.g. good lubricity, low volatility, high viscosity index, solvency for lubricant additives, and easy miscibility with other fluids etc.
Technical Paper
2014-04-01
Shenghan Jin, Predrag Hrnjak
The paper presents a semi-empirical model to predict refrigerant and lubricant inventory in both evaporator and condenser of an automotive air conditioning (MAC) system. In the model, heat exchanger is discretized into small volumes. Temperature, pressure and mass inventory are calculated by applying heat transfer, pressure drop and void fraction correlations to these volumes respectively. Refrigerant and lubricant are treated as a zeotropic mixture with a temperature glide. As refrigerant evaporates or condenses, thermophysical properties are evaluated accordingly with the change of lubricant concentration. Experimental data is used to validate the model. As a result, refrigerant and lubricant mass is predicted within 20% in the evaporator. However, in the condenser, lubricant mass was consistently under-predicted while refrigerant mass was predicted within 15% error. Moreover, the lubricant under-prediction becomes more significant at higher Oil Circulation Ratio (OCR). The analysis showed that the lubricant is separated from the flow in the condenser header and starts to accumulate in the bottom channels.
Technical Paper
2014-04-01
Huize Li, Predrag Hrnjak
Abstract This paper presents an experimental study of lubricant effect on the performance of microchannel evaporators in a typical MAC system. R134a is used as the refrigerant with PAG46 lubricant. The increase of oil circulation rate elevates the pressure drop of the evaporator. The specific enthalpy change in evaporator decreases with increasing oil circulation rate, while refrigerant distribution appears to be more uniform as indicated by infrared images of the evaporator surface temperatures. Thus mass flow rate increases.
Technical Paper
2014-04-01
Yang Zou, Huize Li, Predrag Hrnjak
Abstract Lubricant in compressor usually flows out with refrigerant. Thus, it is evitable for lubricant to be present in the heat exchanger, which significantly affects the heat exchanger performance. This paper is to investigate the effects of PAG oil on R134a distribution in the microchannel heat exchanger (MCHX) with vertical headers and to provide a tool to model R134a (with oil) distribution and its effects on MCHX capacity. The flow configuration in MCHX under the heat pump mode of the reversible system is mimicked in the experimental facility: refrigerant-oil mixture is fed into the test header from the bottom pass and exits through the top pass. It is found that a small amount of oil (OCR=0.5%) worsen the distribution. But further increasing OCR to 2.5% and 4.7%, the distribution becomes better. However, in a multi-pass microchannel heat exchanger model (considering oil effects), though the distribution is better and the capacity is closer to the uniform distribution case, the MCHX capacity decreases with respect to OCR because oil affects the heat transfer and pressure drop in the microchannel heat exchanger.
Technical Paper
2014-04-01
Huize Li, Predrag Hrnjak
Abstract The effect of lubricant on distribution is investigated by relating the flow regime in the horizontal inlet header and the corresponding infrared image of the evaporator. Visualization of the flow regime is performed by high-speed camera. R134a is used as the refrigerant with PAG 46 as lubricant, forming foam in all flow regimes. Quantitative information including foam location, foam layer thickness is obtained using a matlab-based video processing program. Oil circulation rate effect on flow regime is analyzed quantitatively.
Technical Paper
2014-04-01
Andrew P. Roberts, Richard Brooks, Philip Shipway, Robert Gilchrist, Ian Pegg
Abstract The thermal efficiency of an internal combustion engine at steady state temperatures is typically in the region of 25-35%[1]. In a cold start situation, this reduces to be between 10% and 20% [2]. A significant contributor to the reduced efficiency is poor performance by the engine lubricant. Sub optimal viscosity resulting from cold temperatures leads to poor lubrication and a subsequent increase in friction and fuel consumption. Typically, the engine lubricant takes approximately twenty minutes [3] to reach steady state temperatures. Therefore, if the lubricant can reach its steady state operating temperature sooner, the engine's thermal efficiency will be improved. It is hypothesised that, by decoupling the lubricant from the thermal mass of the surrounding engine architecture, it is possible to reduce the thermal energy loss from the lubricant to the surrounding metal structure in the initial stages of warm-up. Using a bespoke oil flow rig described in the methodology section of this paper, it has been demonstrated that the addition of a 2 mm thick nylon tube, increases the maximum temperature differential between the lubricant and surrounding metal by 145% and reduces the energy losses from the gallery by 50%.
Technical Paper
2014-04-01
Azmi Osman
Abstract Designing and developing a structural oil pan that optimally fulfils all the requirements in terms of structural, NVH, weight, cost, functions and packaging space for high performance vehicles can be really challenging. These requirements on the other hand tend to compromise one and another if the part designers give imbalanced priorities over certain requirements if compared to the rest. In the past, this delicate balance can only be evaluated during the actual prototype testing rather than during the design stage. Once shortcomings are identified during the prototype testing, it is often necessary for designers to conduct costly and time consuming design iterations all over again. To avoid the trial-and-error approach, this paper discusses a generic design methodology based on a unique oil pan's basic shape to effectively address the crucial requirements during the design stage. In particular, the design approach relies a lot on the use of 3D CAD software to systematically conduct numerous design iterations.
Viewing 1 to 30 of 3680

Filter

  • Range:
    to:
  • Year: