Criteria

Text:
Topic:
Display:

Results

Viewing 1 to 30 of 3775
2016-03-14 ...
  • March 14-15, 2016 (8:30 a.m. - 4:30 p.m.) - Troy, Michigan
Training / Education Classroom Seminars
Lubricating fluids are the lifeblood of modern engines, performing numerous vital functions from reducing system friction, temperature, and fuel consumption to minimizing tailpipe emissions. This comprehensive seminar covers the latest developments in lubricating fluids technologies and explores the relationships between lubricating fluids and emissions, after-treatment devices, bio-fuels, and fuel economy. Fundamentals of crankcase lubrication, including the properties and performance requirements of global base stocks and lubricants will be covered.
2015-10-27
Event
2015-10-27
Event
2015-10-27
Event
2015-10-27
Event
Shell GTL base oils are high quality Group III base oils with superior low-temperature viscometrics and volatility properties compared with other typical Group III base oils. Improved low temperature properties of Shell GTL base oils provides formulation capability in the areas of cold start, fuel economy and deposit control. Combined with reduced volatility, Shell GTL base oils provide a cost-effective route to deliver superior fuel economy oil formulation. A significant amount of development work has taken place over many years, proving the performance capability of Shell GTL base oils in a wide variety of applications.
2015-10-14
Event
2015-09-29
Technical Paper
2015-01-2811
Tingjun Hu, Ho Teng, Xuwei Luo, Chun Lu, Jiankun Luo
When highly boosted, turbocharged gasoline direct injection (TGDI) engines can have torque curves comparable to those of light-duty (LD) diesel engines. Hence, applications of TGDI engines have been considered to be extended from passenger cars to LD vehicles, such as Ford F150 and E150. Most modern TGDI engines employ homogeneous mixture combustion with an injection pressure  150 bar typically. Under this combustion mode, two challenges having to be faced in the engine development are: 1) fuel dilution of the crankcase oil due to interactions of fuel sprays with the cylinder wall as a result of spray impingement on the cylinder wall or on the piston top when the fuel demand is high or fuel condensation during the warmup phase; 2) low-speed pre-ignition (LSPI) at high loads and low speeds, which often leads to a severe knock combustion known as the super knock. It is widely believed that LSPI is triggered by self ignition of oil particles entered the engine cylinder.
2015-09-29
Technical Paper
2015-01-2876
Shankar Patil, P Mahesh, Krishnan Sadagopan, Gokhul SA
In a tropical conditions , over a period of several months using 12 Nos. of New Generation 9-15T Intermediate Commercial Vehicles built with 4-Cyl 120HP BS3 Diesel engines run at regular interval from zero to 60000 Km. Field run data composed and analyzed with Intended Duty cycle for engine oil drain life estimation . The ICV trucks with sump capacity 0.083- 0.104 Liter/hp and SAE 15W40 viscosity of oil meeting API CH-4, API CI-4+ from group –I and Group-II base stocks are considered. The engine wear is more a function of silica concentration, load factor and age than the API category of oil. Oil drain interval is found proportional to the sump volume for the same stress on oil. Iron concentration and kinematic viscosity decide useful oil life with respect to the limits fixed by the engine manufacturer. In tropical conditions, field trials are carried out on 10T payload vehicles at higher temperature, humidity, dust levels and load factor than the other hemisphere conditions.
2015-09-06
Technical Paper
2015-24-2535
Andreas Behn, Matthias Feindt, Gerhard Matz, Sven Krause, Marcus Gohl
The limitation of fuel ingress into the oil sump of an internal combustion engine during operation is important to preserve the tribological properties of the lubricant and limit component wear. On one side efficient simulation models are necessary to estimate the fuel ingress in an early stage of the development process. On the other side application and test engineers require effective tools to optimize the injection rates at the test cell. A sensitive and versatile measurement system is essential for this process. Important sampling positions for fuel concentration measurements while using a late post injection are the injector target, the cylinder liner below, the oil sump as well as the crankcase ventilation. While oil sampling from the sump and laboratory analysis is a common procedure, there is no system for automatic sampling of all the positions and fast online analysis of the samples.
2015-08-18 ...
  • August 18-19, 2015 (8:30 a.m. - 4:30 p.m.) - Troy, Michigan
  • November 2-3, 2015 (8:30 a.m. - 4:30 p.m.) - Troy, Michigan
  • April 25-26, 2016 (8:30 a.m. - 4:30 p.m.) - Troy, Michigan
  • October 27-28, 2016 (8:30 a.m. - 4:30 p.m.) - Baltimore, Maryland
Training / Education Classroom Seminars
Improving vehicular fuel efficiency is of paramount importance to the global economy. Governmental regulations, climate change and associated health concerns, as well as the drive towards energy independence, have created a technical need to achieve greater fuel efficiency. While vehicle manufacturers are focusing efforts on improved combustion strategies, smaller displacement engines, weight reduction, low friction surfaces, etc., the research involved in developing fuel efficient engine oils has been less publicized.
2015-06-16
Standard
AS29561B
SCOPE IS UNAVAILABLE.
2015-06-15
Technical Paper
2015-01-2259
Jan Zuleeg
Abstract Tribological contacts between plastic or polymer materials can exhibit stick-slip behaviour that generates noise. Tribological properties can be influenced by lubricants such as bonded coatings, greases, and fluids. In this paper, well known theories about polymer friction from the literature will be shown to be useful in the development of new lubricants. Theoretical results have been validated with a Ziegler Stick-Slip Test Rig. The test methods presented in this paper are used in the development of lubricants for automotive applications (in the interior of the car including invisible lubricants developed for Class “A” surfaces).
2015-06-15
Journal Article
2015-01-2173
Srikumar C Gopalakrishnan, Teik Lim
Abstract Modeling of elastohydrodynamic lubrication phenomena for the spiral bevel gears is performed in the present study. The damping and the friction coefficient generated from the lubricated contact area will have profound effects on the dynamics of spiral bevel gears. Thus the damping value generated from this friction model will be time varying. This makes the use of constant and empirical damping value in the dynamics of spiral bevel gears questionable. The input geometric and kinematic data required for the elastohydrodynamic lubrication (EHL) simulations are obtained using Tooth Contact Analysis. A full numerical elastohydrodynamic lubrication simulations are carried out using asymmetric integrated control volume (AICV) algorithm to compute the contact pressures. The fast Fourier transform is used to calculate the elastic deformations on the gear surfaces due to contact load.
2015-05-15
Book
This is the electronic format of the Journal.
2015-04-21
Event
The industry continues to work on understanding the interaction of lubricating fluids with engine hardware in order to improve vehicle efficiency, durability, and performance. The Engine Lubricants Session presents a variety of papers dealing with advances in engine oils and their relationship to improved hardware performance.
2015-04-15
Book
This is the electronic format of the Journal.
2015-04-14
Technical Paper
2015-01-0679
Michele Maria Schirru, Mike Sutton, Rob Dwyer-Joyce, Oliver Smith, Robin Mills
Abstract A novel ultrasonic viscometer for in-situ applications in engine components is presented. The viscosity measurement is performed by shearing the solid-oil contact interface by means of shear ultrasonic waves. Previous approaches to ultrasonically measure the viscosity suffer from poor accuracy owing to the acoustic miss-match between metal component and lubricant [1]. The method described overcomes this limitation by placing an intermediate matching layer between the metal and lubricant. Results are in excellent agreement with the ones obtained with the conventional viscometers when testing Newtonian fluids. This study also highlights that when complex mixtures are tested the viscosity measurement is frequency dependent. At high ultrasonic frequencies, e.g. 10 MHz, it is possible to isolate the viscosity of the base, while to obtain the viscosity of the mixture it is necessary to choose a lower operative frequency, e.g. 100 kHz, to match the fluid particle relaxation time.
2015-04-14
Technical Paper
2015-01-1285
Dingfeng Deng, Fanghui Shi, Louis Begin, Isaac Du
Abstract Instances have occurred where the outer surface of turbocharger fully floating journal bearing bushings have exhibited damage from oil debris resulting in constant tone noise and subsequent warranty claims. This paper studies the effect of oil debris in Turbocharger journal bearings on Subsynchronous NVH. A CFD model is built to study the behavior of oil debris particles with different sizes. It is found that the dominant centrifugal forces prevent larger particles from reaching the inner film while smaller particles travel more easily to the inner film. It is also found that the turbine side is more likely to become damaged from debris than the compressor side bearing due to higher temperatures. A tribology analysis shows that oil debris particles in the outer film will reduce the speed ratio, while oil debris particles in inner film will increase the speed ratio. The tribology analysis also predicts the effects of oil debris on bearing stiffness and damping.
2015-04-14
Technical Paper
2015-01-0966
Sauhard Singh, Anil Bhardwaj, Reji Mathai, A K Sehgal, R Suresh, B P Das, Nishant Tyagi, Jaywant Mohite, N B Chougule
Abstract The ever increasing demand of fuels for vehicles can only be met by use of alternate fuels like Compressed Natural Gas (CNG) and Hydrogen (H2). The 18 percent hydrogen enriched CNG fuel referred to as HCNG has the potential to lower emissions and is considered to be the first step towards promotion of a Hydrogen economy. While, automotive industry matures up with the usage of new engines, lubricant manufacturers are also moving on to the next stage by formulating oils to be used in gas engines such as CNG, HCNG etc. This paper presents the evaluation of gas engine oil on 6-cylinder heavy duty CNG engine using HCNG. The six cylinder engine was chosen due to its importance for urban bus transportation. The engine was optimized for using HCNG fuel. Initial performance of the engine using HCNG was compared vis-à-vis CNG and, thereafter, the engine was subjected to endurance test of 500 hours as per 8 mode engine simulated driving cycle.
2015-04-14
Technical Paper
2015-01-0755
Yasuo Moriyoshi, Toshio Yamada, Daisuke Tsunoda, Mingzhao Xie, Tatsuya Kuboyama, Koji Morikawa
Abstract The authors investigated the reasons of how a preignition occurs in a highly boosted gasoline engine. Based on the authors' experimental results, theoretical investigations on the processes of how a particle of oil or solid comes out into the cylinder and how a preignition occurs from the particle. As a result, many factors, such as the in-cylinder temperature, the pressure, the equivalence ratio and the component of additives in the lubricating oil were found to affect the processes. Especially, CaCO3 included in an oil as an additive may be changed to CaO by heating during the expansion and exhaust strokes. Thereafter, CaO will be converted into CaCO3 again by absorbing CO2 during the intake and compression strokes. As this change is an exothermic reaction, the temperature of CaCO3 particle increases over 1000K of the chemical equilibrium temperature determined by the CO2 partial pressure.
2015-04-14
Journal Article
2015-01-0753
Max Magar, Ulrich Spicher, Stefan Palaveev, Marcus Gohl, Gunther Müller, Christian Lensch-Franzen, Jens Hadler
Abstract In the present paper the results of a set of experimental investigations on LSPI are discussed. The ignition system of a test engine was modified to enable random spark advance in one of the four cylinders. LSPI sequences were successfully triggered and exhibited similar characteristics compared to regularly occurring pre-ignition. Optical investigations applying a high speed camera system enabling a visualization of the combustion process were performed. In a second engine the influence of the physical properties of the considered lubricant on the LSPI frequency was analyzed. In addition different piston ring assemblies have been tested. Moreover an online acquisition of the unburned hydrocarbon emissions in the exhaust gas was performed. The combination of these experimental techniques in the present study provided further insights on the development of LSPI sequences.
2015-04-14
Journal Article
2015-01-0967
Tingjun Hu, Ho Teng, Xuwei Luo, Bin Chen
Abstract Turbocharged gasoline direct injection (TGDI) engines often have a flat torque curve with the maximum torque covering a wide range of engine speeds. Increasing the high-speed-end torque for a TGDI engine provides better acceleration performance to the vehicle powered by the engine. However, it also requires more fuel deliveries and thus longer injection durations at high engine speeds, for which the multiple fuel injections per cycle may not be possible. In this study, results are reported of an experimental investigation of impact of fuel injection on dilution of the crankcase oil for a highly-boosted TGDI engine. It was found in the tests that the high-speed-end torque for the TGDI engine had a significant influence on fuel dilution: longer injection durations resulted in impingement of large liquid fuel drops on the piston top, leading to a considerable level of fuel dilution.
2015-04-14
Journal Article
2015-01-0683
Jiman Han, Qian Zou, Gary Barber, Xichen Sun
Abstract This paper describes the scuffing tests performed to understand the effect of surface roughness and lubrication on scuffing behavior for austempered ductile iron (ADI) material. As the scuffing tendency is increased, metal-to-metal interaction between contacting surfaces is increased. Lubrication between sliding surfaces becomes the boundary or mixed lubrication condition. Oil film breakdown leads to scuffing failure with the critical load. Hence, the role of surface roughness and lubrication becomes prominent in scuffing study. There are some studies in which the influence of the surface roughness and lubrication on scuffing was evaluated. However, no comprehensive scuffing study has been found in the literature regarding the effect of surface roughness and lubrication on scuffing behavior of ADI material. The current research took into account the inferences of surface roughness and lubrication on scuffing for ADI.
2015-04-14
Journal Article
2015-01-0684
Sarah M. Lundgren, Katja Eriksson, Brenda Rossenaar
Abstract For years amine surfactants, such as primary amines, ethoxylated amines and polyamines, have been used as friction modifiers in lubricating oils in order to improve fuel economy. This paper describes how the friction performance of amine containing lubricating oils can be improved with the addition of a small amount of molybdenum dithiocarbamate (MoDTC). Three fatty amines, tallow amine (Armeen® T), tallow propanediamine (Duomeen® T) and tallow dipropylenetriamine (Triameen® T), have been tested with Zinc Dialkyldithiophosphate (ZDDP) and with and without MoDTC in the Minitraction machine (MTM). It is shown that MoDTC improves the friction of Duomeen T and Triameen T while not for Armeen T. It is argued that the packing of Armeen T does not allow MoDTC to reach the surface and to create molybdenum disulphide (MoS2) sheets. Duomeen T and Triameen T have more nitrogen atoms and cannot pack as closely at the surface as Armeen T which allow MoS2 sheets to form.
Viewing 1 to 30 of 3775

Filter

  • Range:
    to:
  • Year: